Using deep learning to accelerate magnetic resonance measurements of molecular exchange

被引:1
|
作者
Cheng, Zhaowei [1 ]
Hu, Songtao [2 ]
Han, Guangxu [2 ]
Fang, Ke [1 ]
Jin, Xinyu [1 ]
Ordinola, Alfredo [3 ]
Ozarslan, Evren [3 ]
Bai, Ruiliang [2 ,4 ,5 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Key Lab Biomed Engn,Educ Minist, Hangzhou, Peoples R China
[3] Linkoping Univ, Dept Biomed Engn, Linkoping, Sweden
[4] Zhejiang Univ, Interdisciplinary Inst Neurosci & Technol, Sch Med, Hangzhou, Peoples R China
[5] Zhejiang Univ, MOE Frontier Sci Ctr Brain Sci & Brain Machine Int, Liangzhu Lab, State Key Lab Brain Machine Intelligence, 1369 West Wenyi Rd, Hangzhou 311121, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 05期
基金
中国国家自然科学基金;
关键词
ULTRAFAST 2D NMR; DIFFUSION; MODEL; APOPTOSIS; DYNAMICS; NECROSIS;
D O I
10.1063/5.0159343
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Real-time monitoring and quantitative measurement of molecular exchange between different microdomains are useful to characterize the local dynamics in porous media and biomedical applications of magnetic resonance. Diffusion exchange spectroscopy (DEXSY) is a noninvasive technique for such measurements. However, its application is largely limited by the involved long acquisition time and complex parameter estimation. In this study, we introduce a physics-guided deep neural network that accelerates DEXSY acquisition in a data-driven manner. The proposed method combines sampling pattern optimization and physical parameter estimation into a unified framework. Comprehensive simulations and experiments based on a two-site exchange system are conducted to demonstrate this new sampling optimization method in terms of accuracy, repeatability, and efficiency. This general framework can be adapted for other molecular exchange magnetic resonance measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Magnetic resonance shoulder imaging using deep learning-based algorithm
    Liu, Jing
    Li, Wei
    Li, Ziyuan
    Yang, Junzhe
    Wang, Ke
    Cao, Xinming
    Qin, Naishan
    Xue, Ke
    Dai, Yongming
    Wu, Peng
    Qiu, Jianxing
    EUROPEAN RADIOLOGY, 2023, 33 (07) : 4864 - 4874
  • [22] Interpretation of Magnetic Resonance Images of Temporomandibular Joint Disorders by Using Deep Learning
    Ozsari, Sifa
    Yapicioglu, Fatima Rabia
    Yilmaz, Dilek
    Kamburoglu, Kivanc
    Guzel, Mehmet Serdar
    Bostanci, Gazi Erkan
    Acici, Koray
    Asuroglu, Tunc
    IEEE ACCESS, 2023, 11 : 49102 - 49113
  • [23] A deep learning approach for brain tumor detection using magnetic resonance imaging
    Nayan, Al-Akhir
    Mozumder, Ahamad Nokib
    Haque, Md. Rakibul
    Sifat, Fahim Hossain
    Mahmud, Khan Raqib
    Azad, Abul Kalam Al
    Kibria, Muhammad Golam
    arXiv, 2022,
  • [24] Special issue on machine learning and deep learning in magnetic resonance
    Zhang, Hui
    Alexander, Daniel C.
    Shen, Dinggang
    Yap, Pew-Thian
    NMR IN BIOMEDICINE, 2022, 35 (04)
  • [25] NUCLEAR MAGNETIC RESONANCE MEASUREMENTS OF PROTON EXCHANGE IN AQUEOUS THIOUREA
    VOLD, RL
    CORREA, A
    JOURNAL OF PHYSICAL CHEMISTRY, 1970, 74 (13): : 2674 - &
  • [26] Global deep learning optimization of chemical exchange saturation transfer magnetic resonance fingerprinting acquisition schedule
    Cohen, Ouri
    Otazo, Ricardo
    NMR IN BIOMEDICINE, 2023, 36 (10)
  • [27] A Deep Learning Model to Accelerate Molecular Dynamics Simulations of Membrane Fusion for Exocytosis
    Zhu, H.
    An, D.
    O'Shaughnessy, B.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 350 - 350
  • [28] Deep learning-assisted diagnosis of femoral trochlear dysplasia based on magnetic resonance imaging measurements
    Sheng-Ming Xu
    Dong Dong
    Wei Li
    Tian Bai
    Ming-Zhu Zhu
    Gui-Shan Gu
    World Journal of Clinical Cases, 2023, (07) : 1477 - 1487
  • [29] Deep learning-assisted diagnosis of femoral trochlear dysplasia based on magnetic resonance imaging measurements
    Xu, Sheng-Ming
    Dong, Dong
    Li, Wei
    Bai, Tian
    Zhu, Ming-Zhu
    Gu, Gui-Shan
    WORLD JOURNAL OF CLINICAL CASES, 2023, 11 (07) : 1477 - 1487
  • [30] ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING
    Wang, Shanshan
    Su, Zhenghang
    Ying, Leslie
    Peng, Xi
    Zhu, Shun
    Liang, Feng
    Feng, Dagan
    Liang, Dong
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 514 - 517