Multi-UAV Cooperative Search Based on Reinforcement Learning With a Digital Twin Driven Training Framework

被引:32
|
作者
Shen, Gaoqing [1 ]
Lei, Lei [1 ]
Zhang, Xinting [1 ]
Li, Zhilin [1 ]
Cai, Shengsuo [1 ]
Zhang, Lijuan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Cooperative target search; digital twin; multi-agent deep reinforcement learning; unmanned aerial vehicles; TARGET SEARCH; FUSION;
D O I
10.1109/TVT.2023.3245120
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the cooperative search for stationary targets by multiple unmanned aerial vehicles (UAVs) with limited sensing range and communication ability in a dynamic threatening environment. The main purpose is to use multiple UAVs to find more unknown targets as soon as possible, increase the coverage rate of the mission area, and more importantly, guide UAVs away from threats. However, traditional search methods are mostly unscalable and perform poorly in dynamic environments. A new multi-agent deep reinforcement learning (MADRL) method, DNQMIX, is proposed in this study to solve the multi-UAV cooperative target search (MCTS) problem. The reward function is also newly designed for the MCTS problem to guide UAVs to explore and exploit the environment information more efficiently. Moreover, this paper proposes a digital twin (DT) driven training framework "centralized training, decentralized execution, and continuous evolution" (CTDECE). It can facilitate the continuous evolution of MADRL models and solve the tradeoff between training speed and environment fidelity when MADRL is applied to real-world multi-UAV systems. Simulation results show that DNQMIX outperforms state-of-art methods in terms of search rate and coverage rate.
引用
收藏
页码:8354 / 8368
页数:15
相关论文
共 50 条
  • [31] Multi-UAV distributed cooperative search using fuzzy logic
    Du, Jiyong
    Zhang, Fengming
    Liu, Huawei
    Mao, Hongbao
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41 (05): : 96 - 101
  • [32] Dynamic Attention Network for Multi-UAV Reinforcement Learning
    Xu, Dongsheng
    Wu, Shang
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [33] A hierarchical multi-UAV cooperative framework for infrastructure inspection and reconstruction
    Gao, Chuanxiang
    Wang, Xinyi
    Chen, Xi
    Chen, Ben M.
    CONTROL THEORY AND TECHNOLOGY, 2024, 22 (03) : 394 - 405
  • [34] Cooperative Multiagent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control
    Yun, Won Joon
    Park, Soohyun
    Kim, Joongheon
    Shin, MyungJae
    Jung, Soyi
    Mohaisen, David A.
    Kim, Jae-Hyun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7086 - 7096
  • [35] Multi-UAV Path Planning and Following Based on Multi-Agent Reinforcement Learning
    Zhao, Xiaoru
    Yang, Rennong
    Zhong, Liangsheng
    Hou, Zhiwei
    DRONES, 2024, 8 (01)
  • [36] Extrinsic-and-Intrinsic Reward-Based Multi-Agent Reinforcement Learning for Multi-UAV Cooperative Target Encirclement
    Chen, Jinchao
    Wang, Yang
    Zhang, Ying
    Lu, Yantao
    Shu, Qiuhao
    Hu, Yujiao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
  • [37] QoE-Driven Adaptive Deployment Strategy of Multi-UAV Networks Based on Hybrid Deep Reinforcement Learning
    Zhou, Yi
    Ma, Xiaoyong
    Hu, Shuting
    Zhou, Danyang
    Cheng, Nan
    Lu, Ning
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (08) : 5868 - 5881
  • [38] Research on Multi-UAV Cooperative Dynamic Path Planning Algorithm Based on Conflict Search
    Wang, Zhigang
    Gong, Huajun
    Nie, Mingtao
    Liu, Xiaoxiong
    DRONES, 2024, 8 (06)
  • [39] Optimal formation tracking control based on reinforcement learning for multi-UAV systems
    Wang, Weizhen
    Chen, Xin
    Jia, Jiangbo
    Wu, Kaili
    Xie, Mingyang
    CONTROL ENGINEERING PRACTICE, 2023, 141
  • [40] Transformer-Based Reinforcement Learning for Scalable Multi-UAV Area Coverage
    Chen, Dezhi
    Qi, Qi
    Fu, Qianlong
    Wang, Jingyu
    Liao, Jianxin
    Han, Zhu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 10062 - 10077