Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases

被引:16
|
作者
Onate, Angelo [1 ,2 ]
Sanhueza, Juan Pablo [1 ]
Zegpi, Diabb [4 ]
Tuninetti, Victor [5 ]
Ramirez, Jesus [1 ]
Medina, Carlos [3 ]
Melendrez, Manuel [1 ]
Rojas, David [1 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Mat Engn DIMAT, Edmundo Larenas 315, Concepcion, Chile
[2] Univ Bio, Fac Engn, Dept Mech Engn DIMEC, Bio,Ave Collao 1202, Concepcion, Chile
[3] Univ Concepcion, Fac Engn, Dept Mech Engn DIM, Edmundo Larenas 219, Concepcion, Chile
[4] Mondelez Int, Dept Cent Analyt Team CAT, 905 West Fulton Market,Suite 200, Chicago, IL USA
[5] Univ La Frontera, Dept Mech Engn, Francisco Salazar 01145, Temuco 4780000, Chile
关键词
Phase prediction; High entropy alloys; Machine Learning; Intermetallics prediction; SELECTION; DESIGN;
D O I
10.1016/j.jallcom.2023.171224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [12] Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics
    Lin, Tianyu
    Wang, Ruolan
    Liu, Dazhi
    CRYSTALS, 2024, 14 (05)
  • [13] Interpretable Machine Learning Model-Based Phase Prediction for Refractory High-Entropy Alloys
    Zhao, Fengyuan
    Ye, Yicong
    Zhang, Zhouran
    Li, Yahao
    Wang, Jie
    Tang, Yu
    Li, Shun
    Bai, Shuxin
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2023, 52 (04): : 1192 - 1200
  • [14] Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach
    Chen, Cun
    Han, Xiaoli
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 239
  • [15] Interpretable Machine Learning Model-Based Phase Prediction for Refractory High-Entropy Alloys
    Zhao Fengyuan
    Ye Yicong
    Zhang Zhouran
    Li Yahao
    Wang Jie
    Tang Yu
    Li Shun
    Bai Shuxin
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (04) : 1192 - 1200
  • [16] Machine learning-based crystal structure prediction for high-entropy oxide ceramics
    Liu, Jicheng
    Wang, Anzhe
    Gao, Pan
    Bai, Rui
    Liu, Junjie
    Du, Bin
    Fang, Cheng
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (02) : 1361 - 1371
  • [17] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Yao-Jen Chang
    Chia-Yung Jui
    Wen-Jay Lee
    An-Chou Yeh
    JOM, 2019, 71 : 3433 - 3442
  • [18] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [19] Improving machine learning based phase and hardness prediction of high-entropy alloys by using Gaussian noise augmented data
    Ye, Yicong
    Li, Yahao
    Ouyang, Runlong
    Zhang, Zhouran
    Tang, Yu
    Bai, Shuxin
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 223
  • [20] Enhanced phase prediction of high-entropy alloys through machine learning and data augmentation
    Wu, Song
    Song, Zihao
    Wang, Jianwei
    Niu, Xiaobin
    Chen, Haiyuan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (02) : 717 - 729