Negative Data in Data Sets for Machine Learning Training

被引:16
|
作者
Maloney, Michael P.
Coley, Connor W.
Genheden, Samuel
Carson, Nessa
Helquist, Paul
Norrby, Per-Ola
Wiest, Olaf
机构
[1] Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,IN,46556, United States
[2] Department of Chemical Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,MA,02139, United States
[3] Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal,SE-431 83, Sweden
[4] Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield,SK10 2NA, United Kingdom
[5] Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal,SE-431 83, Sweden
来源
JOURNAL OF ORGANIC CHEMISTRY | 2023年 / 88卷 / 09期
关键词
D O I
10.1021/acs.joc.3c00844
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
引用
收藏
页码:5239 / 5241
页数:3
相关论文
共 50 条
  • [21] Large data sets and machine learning: Applications to statistical arbitrage
    Huck, Nicolas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 278 (01) : 330 - 342
  • [22] Efficient partition of learning data sets for neural network training
    Tetko, IV
    Villa, AEP
    NEURAL NETWORKS, 1997, 10 (08) : 1361 - 1374
  • [23] Efficient partition of learning data sets for neural network training
    Inst. of Bioorg. and Petrol. Chem., Kiev, Ukraine
    不详
    Neural Netw., 8 (1361-1374):
  • [24] Attesting Distributional Properties of Training Data for Machine Learning
    Duddu, Vasisht
    Das, Anudeep
    Khayata, Nora
    Yalame, Hossein
    Schneider, Thomas
    Asokan, N.
    COMPUTER SECURITY-ESORICS 2024, PT I, 2024, 14982 : 3 - 23
  • [25] Training Data Debugging for the Fairness of Machine Learning Software
    Li, Yanhui
    Meng, Linghan
    Chen, Lin
    Yu, Li
    Wu, Di
    Zhou, Yuming
    Xu, Baowen
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 2215 - 2227
  • [26] Privacy Risk Assessment of Training Data in Machine Learning
    Bai, Yang
    Fan, Mingyu
    Li, Yu
    Xie, Chuangmin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1010 - 1015
  • [27] Supervised machine learning using encrypted training data
    Francisco-Javier González-Serrano
    Adrián Amor-Martín
    Jorge Casamayón-Antón
    International Journal of Information Security, 2018, 17 : 365 - 377
  • [28] On the least amount of training data for a machine learning model
    Zhao, Dazhi
    Hao, Yunquan
    Li, Weibin
    Tu, Zhe
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4891 - 4906
  • [29] Supervised machine learning using encrypted training data
    Gonzalez-Serrano, Francisco-Javier
    Amor-Martin, Adrian
    Casamayon-Anton, Jorge
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2018, 17 (04) : 365 - 377
  • [30] Data Visualization through R and Azure for Scaling Machine Training Sets
    Srivastava, Nidhi
    Pandey, Rajiv
    Verma, Komal
    2017 7TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT), 2017, : 345 - 349