Negative Data in Data Sets for Machine Learning Training

被引:16
|
作者
Maloney, Michael P.
Coley, Connor W.
Genheden, Samuel
Carson, Nessa
Helquist, Paul
Norrby, Per-Ola
Wiest, Olaf
机构
[1] Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,IN,46556, United States
[2] Department of Chemical Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,MA,02139, United States
[3] Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal,SE-431 83, Sweden
[4] Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield,SK10 2NA, United Kingdom
[5] Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal,SE-431 83, Sweden
来源
JOURNAL OF ORGANIC CHEMISTRY | 2023年 / 88卷 / 09期
关键词
D O I
10.1021/acs.joc.3c00844
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
引用
收藏
页码:5239 / 5241
页数:3
相关论文
共 50 条
  • [1] Negative Data in Data Sets for Machine Learning Training
    Maloney, Michael P.
    Coley, Connor W.
    Genheden, Samuel
    Carson, Nessa
    Helquist, Paul
    Norrby, Per-Ola
    Wiest, Olaf
    ORGANIC LETTERS, 2023, 25 (17) : 2945 - 2947
  • [2] A Machine Learning Framework for Balancing Training Sets of Sensor Sequential Data Streams
    Setiawan, Budi Darma
    Serdult, Uwe
    Kryssanov, Victor
    SENSORS, 2021, 21 (20)
  • [3] Analysis of Data Sets With Learning Conflicts for Machine Learning
    Ledesma, Sergio
    Ibarra-Manzano, Mario-Alberto
    Cabal-Yepez, Eduardo
    Almanza-Ojeda, Dora-Luz
    Avina-Cervantes, Juan-Gabriel
    IEEE ACCESS, 2018, 6 : 45062 - 45070
  • [4] Benchmark AFLOW Data Sets for Machine Learning
    Clement, Conrad L.
    Kauwe, Steven K.
    Sparks, Taylor D.
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2020, 9 (02) : 153 - 156
  • [5] Benchmark AFLOW Data Sets for Machine Learning
    Conrad L. Clement
    Steven K. Kauwe
    Taylor D. Sparks
    Integrating Materials and Manufacturing Innovation, 2020, 9 : 153 - 156
  • [6] Characterization of machine learning benching data sets
    Al-Mashouq, K
    Nawaz, Z
    2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 3415 - 3419
  • [7] Fuzzy sets in machine learning and data mining
    Huellermeier, Eyke
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1493 - 1505
  • [8] MLFMF: Data Sets for Machine Learning for Mathematical Formalization
    Bauer, Andrej
    Petkovi, Matej
    Todorovski, Ljupco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Data Sets For Machine Learning In Wireless Communications And Networks
    Fischione, Carlo
    Chafii, Marwa
    Deng, Yansha
    Erol-Kantarci, Melike
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (09) : 80 - 81
  • [10] Machine Learning Training on Encrypted Data with TFHE
    Montero, Luis
    Frery, Jordan
    Kherfallah, Celia
    Bredehoft, Roman
    Stoian, Andrei
    PROCEEDINGS OF THE 10TH ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, IWSPA 2024, 2024, : 71 - 76