Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis

被引:13
|
作者
Zhao, Shicheng [1 ]
He, Ping [1 ]
Wang, Xiya [1 ]
Xu, Xinpeng [1 ]
Qiu, Shaojun [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Plant Nutr & Fertilizer, Minist Agr & Rural Affairs, Beijing 100081, Peoples R China
关键词
Tillage practice; Soil organic carbon sequestration; Subsoiling; Deep ploughing; Meta-analysis; NO-TILLAGE; CROP YIELD; CONVENTIONAL-TILLAGE; ROOT-GROWTH; NITROGEN; MATTER; MANAGEMENT; DYNAMICS; STORAGE; MAIZE;
D O I
10.1016/j.jclepro.2023.136686
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The increasing atmospheric carbon dioxide (CO2) causes serious environmental problems, soil organic carbon (SOC) sequestration is suggested as an efficient strategy to offset global CO2 emissions. Deep tillage (DT) can change soil properties and the input and loss of OC, and then influence SOC sequestration across the whole soil profile. However, the effect of DT on SOC sequestration relative to conventional tillage (CT) under different environmental factors and management practices is unclear in China. In this study, we evaluated the response of SOC stock to DT based on collected field data (447 observations) with a meta-analysis. DT significantly increased SOC stock by 7.36% over CT, with a greater increase for subsoiling (8.76%) than for deep ploughing (DP) (5.85%). Subsoiling enhanced SOC across the 0-40 cm soil layer and the greatest increase occurred at 0-10 cm layer (11.41%); DP enhanced SOC stock at 10-40 cm layer, but had no effect on SOC of 0-10 cm layer. DP and subsoiling did not affect SOC storage below 40 cm depth. According to subgroup analysis, the high rainfall, fine soil texture, residue retained, double cropping, and high rate of N fertilization greatly promoted SOC stock compared with the low rainfall, sandy texture, residue removal, monoculture, and low N fertilizer input under DT. DT significantly enhanced SOC storage under low initial SOC (<15 g kg(-1)), but did not affect SOC when the initial SOC exceeded 15 g kg(-1) compared with CT. However, the experiment duration, initial SOC and bulk density (BD) did not significantly affect the response of SOC to DT. Overall, this study has supplied a reference for SOC management in mitigating climate change, and the specific environmental factors and management practice should be considered when utilizing DT to enhance SOC sequestration in different regions of China.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A wide view of no-tillage practices and soil organic carbon sequestration
    Yang, Xueming
    Drury, Craig F.
    Wander, Michelle M.
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2013, 63 (06): : 523 - 530
  • [32] A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon
    Liu, Xiaotong
    Wu, Xueping
    Liang, Guopeng
    Zheng, Fengjun
    Zhang, Mengni
    Li, Shengping
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (18) : 5292 - 5305
  • [33] Impacts of straw return coupled with tillage practices on soil organic carbon stock in upland wheat and maize croplands in China: A meta-analysis
    Ul Islam, Mahbub
    Jiang, Fahui
    Guo, Zichun
    Liu, Shuai
    Peng, Xinhua
    SOIL & TILLAGE RESEARCH, 2023, 232
  • [34] Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis
    Xu, Hengkang
    Zhang, Yingjun
    Shao, Xinqing
    Liu, Nan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 803
  • [35] Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis
    Xu, Hengkang
    Zhang, Yingjun
    Shao, Xinqing
    Liu, Nan
    Science of the Total Environment, 2022, 803
  • [36] Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems:A Meta-Analysis
    Allam, Mohamed
    Radicetti, Emanuele
    Quintarelli, Valentina
    Petroselli, Verdiana
    Marinari, Sara
    Mancinelli, Roberto
    AGRICULTURE-BASEL, 2022, 12 (04):
  • [37] Carbon sequestration value of biosolids applied to soil: A global meta-analysis
    Wijesekara, Hasintha
    Colyvas, Kim
    Rippon, Paul
    Hoang, Son A.
    Bolan, Nanthi S.
    Manna, Madhab Chandra
    Thangavel, Ramesh
    Seshadri, Balaji
    Vithanage, Meththika
    Awad, Yasser M.
    Surapaneni, Aravind
    Saint, Christopher
    Tian, Guanglong
    Torri, Silvana
    Ok, Yong Sik
    Kirkham, M. B.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 284
  • [38] A global meta-analysis of soil organic carbon in the Anthropocene
    Damien Beillouin
    Marc Corbeels
    Julien Demenois
    David Berre
    Annie Boyer
    Abigail Fallot
    Frédéric Feder
    Rémi Cardinael
    Nature Communications, 14
  • [39] A global meta-analysis of soil organic carbon in the Anthropocene
    Beillouin, Damien
    Corbeels, Marc
    Demenois, Julien
    Berre, David
    Boyer, Annie
    Fallot, Abigail
    Feder, Frederic
    Cardinael, Remi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [40] Effects of different farmland utilization types on soil organic carbon in China: A meta-analysis
    Ouyang, Xueying
    Zhu, Liqun
    LAND DEGRADATION & DEVELOPMENT, 2024, 35 (01) : 508 - 519