Machine learning methods to estimate observational properties of galaxy clusters in large volume cosmological N-body simulations

被引:12
|
作者
de Andres, Daniel [1 ,2 ]
Yepes, Gustavo [1 ,2 ]
Sembolini, Federico [1 ,3 ]
Martinez-Munoz, Gonzalo [4 ]
Cui, Weiguang [1 ,2 ,5 ]
Robledo, Francisco [6 ,7 ]
Chuang, Chia-Hsun [8 ,9 ]
Rasia, Elena [10 ,11 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, M-8, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Ctr Invest Avanzada Fis Fundamental CIAFF, E-28049 Madrid, Spain
[3] Equifax Lber Data & Analyt, Paseo La Castellana 259D, E-28046 Madrid, Spain
[4] Univ Autonoma Madrid, Comp Sci Dept, Escuela Politecn Super, E-28049 Madrid, Spain
[5] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland
[6] Univ Pats Vasco, Dept Fundamentos Andlisis Econemko 2, Euskal Herriko Unibertsitatea, Barrio Sarriena S-N, E-48940 Leioa, Bizkaia, Spain
[7] Univ Pau & Pays Adour, Lab Math & Leurs Applicat, Ave Univ,BP 576, F-64012 Pau, France
[8] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[9] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA
[10] INAF Osservatorio Astron Trieste, Via Tiepolo 11, I-34123 Trieste, Italy
[11] Inst Fundamental Phys Universe, Via Beirut 2, I-34151 Trieste, Italy
关键词
methods: numerical; galaxies: clusters: general; galaxies: haloes; dark matter; large-scale structure of Universe; cosmology: theory; DARK-MATTER HALOES; LARGE-SCALE STRUCTURE; 3 HUNDRED PROJECT; HOT GAS; HYDRODYNAMICAL SIMULATIONS; MASS; EVOLUTION; SCATTER; MODEL; REDSHIFT;
D O I
10.1093/mnras/stac3009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the applicability of a set of supervised machine learning (ML) models specifically trained to infer observed related properties of the baryonic component (stars and gas) from a set of features of dark matter (DM)-only cluster-size haloes. The training set is built from the three hundred project that consists of a series of zoomed hydrodynamical simulations of cluster-size regions extracted from the 1 Gpc volume MultiDark DM-only simulation (MDPL2). We use as target variables a set of baryonic properties for the intracluster gas and stars derived from the hydrodynamical simulations and correlate them with the properties of the DM haloes from the MDPL2 N-body simulation. The different ML models are trained from this data base and subsequently used to infer the same baryonic properties for the whole range of cluster-size haloes identified in the MDPL2. We also test the robustness of the predictions of the models against mass resolution of the DM haloes and conclude that their inferred baryonic properties are rather insensitive to their DM properties that are resolved with almost an order of magnitude smaller number of particles. We conclude that the ML models presented in this paper can be used as an accurate and computationally efficient tool for populating cluster-size haloes with observational related baryonic properties in large volume N-body simulations making them more valuable for comparison with full sky galaxy cluster surveys at different wavelengths. We make the best ML trained model publicly available.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 38 条
  • [21] Halo mass and weak galaxy-galaxy lensing profiles in resealed cosmological N-body simulations
    Renneby, Malin
    Hilbert, Stefan
    Angulo, Raul E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (01) : 1100 - 1124
  • [22] GreeM: Massively Parallel TreePM Code for Large Cosmological N-body Simulations
    Ishiyama, Tomoaki
    Fukushige, Toshiyuki
    Makino, Junichiro
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2009, 61 (06) : 1319 - 1330
  • [23] Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations
    Gaite, Jose
    GALAXIES, 2013, 1 (01): : 31 - 43
  • [24] SZ scaling relations in galaxy clusters: Results from hydrodynamical N-body simulations
    Da Silva, AJC
    ASTROPHYSICS AND SPACE SCIENCE, 2004, 290 (1-2) : 167 - 176
  • [25] SZ scaling relations in Galaxy Clusters: Results from hydrodynamical N-body simulations
    António J.C. da Silva
    Astrophysics and Space Science, 2004, 290 : 167 - 176
  • [26] Multiresolution analysis of cosmological N-body simulations and comparison with two-dimensional galaxy distributions for estimating large-scale structure
    Ueda, H
    Takeuchi, TT
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2004, 56 (04) : 581 - 590
  • [27] EXPLORING OPEN STAR CLUSTER MEMBERSHIPS WITH N-BODY SIMULATIONS AND MACHINE LEARNING
    Bissekenov, A. A.
    Kalambay, M. T.
    Abylkairov, Y. S.
    Shukirgaliyev, B. T.
    RECENT CONTRIBUTIONS TO PHYSICS, 2024, 90 (03): : 4 - 13
  • [28] Building merger trees from cosmological N-body simulations Towards improving galaxy formation models using subhaloes
    Tweed, D.
    Devriendt, J.
    Blaizot, J.
    Colombi, S.
    Slyz, A.
    ASTRONOMY & ASTROPHYSICS, 2009, 506 (02) : 647 - U610
  • [29] Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations
    Mazzotta, P
    Rasia, E
    Moscardini, L
    Tormen, G
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 354 (01) : 10 - 24
  • [30] The New Numerical Galaxy Catalog (v2GC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmological N-body simulations
    Makiya, Ryu
    Enoki, Motohiro
    Ishiyama, Tomoaki
    Kobayashi, Masakazu A. R.
    Nagashima, Masahiro
    Okamoto, Takashi
    Okoshi, Katsuya
    Oogi, Taira
    Shirakata, Hikari
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2016, 68 (02)