Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules

被引:27
|
作者
Boeije, Yorrick [1 ,2 ]
Van Gompel, Wouter T. M. [3 ]
Zhang, Youcheng [2 ,4 ]
Ghosh, Pratyush [2 ]
Zelewski, Szymon J. [1 ,2 ,5 ]
Maufort, Arthur [3 ]
Roose, Bart [1 ]
Ooi, Zher Ying [1 ]
Chowdhury, Rituparno [2 ]
Devroey, Ilan [3 ]
Lenaers, Stijn [3 ]
Tew, Alasdair [2 ]
Dai, Linjie [1 ,2 ]
Dey, Krishanu [2 ]
Salway, Hayden [1 ]
Friend, Richard H. [2 ]
Sirringhaus, Henning [2 ]
Lutsen, Laurence [3 ]
Vanderzande, Dirk [3 ]
Rao, Akshay [2 ]
Stranks, Samuel D. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[2] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[3] Hasselt Univ, Hybrid Mat Design HyMaD, Inst Mat Res IMO IMOMEC, B-3500 Hasselt, Belgium
[4] Univ Cambridge, Dept Engn, Cambridge Graphene Ctr, Cambridge CB3 0FA, England
[5] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Semicond Mat Engn, PL-50370 Wroclaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
METAL HALIDE PEROVSKITES; HYBRID PEROVSKITES; OPTICAL-PROPERTIES; EDGE STATES; LEAD; PHYSICS; RECOMBINATION; ABSORPTION; QUANTUM; CHAIN;
D O I
10.1021/jacs.3c05974
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-C-i molecules, where C-i indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-C-i)(2)PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C-3)(2)PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-C-i molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)(2)PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.
引用
收藏
页码:21330 / 21343
页数:14
相关论文
共 50 条
  • [21] Data-Driven Design of Electroactive Spacer Molecules to Tune Charge Carrier Dynamics in Layered Halide Perovskite Heterostructures
    Bhatt, Monal
    Nayak, Pabitra Kumar
    Ghosh, Dibyajyoti
    ACS NANO, 2024, 18 (35) : 24484 - 24494
  • [22] Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand
    Fillafer, Nicole
    Seewald, Tobias
    Schmidt-Mende, Lukas
    Polarz, Sebastian
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 466 - 479
  • [23] Spacer Cations Dictate Photoinduced Phase Segregation in 2D Mixed Halide Perovskites
    Mathew, Preethi S.
    DuBose, Jeffrey T.
    Cho, Junsang
    Kamat, Prashant, V
    ACS ENERGY LETTERS, 2021, 6 (07) : 2499 - 2501
  • [24] Interlayer excitons in MoSe2/2D perovskite hybrid heterostructures - the interplay between charge and energy transfer
    Karpinska, M.
    Jasinski, J.
    Kempt, R.
    Ziegler, J. D.
    Sansom, H.
    Taniguchi, T.
    Watanabe, K.
    Snaith, H. J.
    Surrente, A.
    Dyksik, M.
    Maude, D. K.
    Klopotowski, L.
    Chernikov, A.
    Kuc, A.
    Baranowski, M.
    Plochocka, P.
    NANOSCALE, 2022, 14 (22) : 8085 - 8095
  • [25] Charge transfer dynamics in conjugated polymer/MoS2 organic/2D heterojunctions
    Petoukhoff, Christopher E.
    Kosar, Sofiia
    Goto, Manami
    Bozkurt, Ibrahim
    Chhowalla, Manish
    Dani, Keshav M.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) : 929 - 938
  • [26] Ultrafast exciton dynamics in 2D in-plane heteronanostructures: delocalization and charge transfer
    Cassette, E.
    Pedetti, S.
    Mahler, B.
    Ithurria, S.
    Dubertret, B.
    Scholes, G. D.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (12) : 8373 - 8379
  • [27] Modelling iodine diffusion in 2D-Perovskites as a function of the length of the organic spacer molecules
    Imani, Roghayeh
    Ardakani, Abbas Ghasempour
    Moradi, Mahmoud
    Jacobsson, T. Jesper
    Pazoki, Meysam
    SOLAR ENERGY, 2024, 272
  • [28] Interlayer Charge Transfer Regulates Single-Atom Catalytic Activity on Electride/Graphene 2D Heterojunctions
    Li, Wei
    Liu, Cong
    Gu, Chenkai
    Choi, Jin-Ho
    Wang, Song
    Jiang, Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (08) : 4774 - 4783
  • [29] Ultrafast Interlayer Charge Transfer Outcompeting Intralayer Valley Relaxation in Few-Layer 2D Heterostructures
    Sun, Cheng
    Zhou, Hongzhi
    Sheng, Tianyu
    Li, Shuangshuang
    Zhu, Haiming
    ACS NANO, 2023, 18 (01) : 931 - 938
  • [30] Interlayer charge transfer in graphene-2D polyimide heterostructures
    Falorsi, Francesca
    Zhao, Shuangjie
    Liu, Kejun
    Eckel, Christian
    Poehls, Jonas F.
    Bennecke, Wiebke
    Reutzel, Marcel
    Mathias, Stefan
    Watanabe, Kenji
    Taniguchi, Takashi
    Wang, Zhiyong
    Polozij, Miroslav
    Feng, Xinliang
    Heine, Thomas
    Weitz, R. Thomas
    2D MATERIALS, 2025, 12 (02):