Decoupling the response of vegetation dynamics to asymmetric warming over the Qinghai-Tibet plateau from 2001 to 2020

被引:7
|
作者
Xu, Binni [1 ]
Li, Jingji [1 ,2 ,3 ]
Pei, Xiangjun [1 ,2 ,3 ]
Yang, Hailong [1 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Coll Ecol & Environm, Chengdu 610059, Peoples R China
[3] Chengdu Univ Technol, Coll Ecol & Environm, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
基金
中国国家自然科学基金;
关键词
Vegetation dynamics; Asymmetric warming; Topography; Partial least squares structural equation model (PLS-SEM); The qinghai-tibet plateau (QTP); NET PRIMARY PRODUCTION; TIME-SERIES DATA; GREEN-UP DATES; CLIMATE-CHANGE; ALPINE GRASSLAND; ANTHROPOGENIC ACTIVITIES; SPRING PHENOLOGY; LEAF RESPIRATION; LAND-COVER; TEMPERATURE;
D O I
10.1016/j.jenvman.2023.119131
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global land surface air temperature data show that in the past 50 years, the rate of nighttime warming has been much faster than that of daytime, with the minimum daily temperature (Tmin) increasing about 40% faster than the maximum daily temperature (Tmax), resulting in a decreased diurnal temperature difference. The QinghaiTibet Plateau (QTP) is known as the "roof of the world", where temperatures have risen twice as fast as the global average warming rate in the last few decades. The factors affecting vegetation growth on the QTP are complex and still not fully understood to some extent. Previous studies paid less attention to the explanations of the complicated interactions and pathways between elements that influence vegetation growth, such as climate (especially asymmetric warming) and topography. In this study, we characterized the spatial and temporal trends of vegetation coverage and investigated the response of vegetation dynamics to asymmetric warming and topography in the QTP during 2001-2020 using trend analysis, partial correlation analysis, and partial least squares structural equation model (PLS-SEM) analysis. We found that from 2001 to 2020, the entire QTP demonstrated a greening trend in the growing season (April to October) at a rate of 0.0006/a (p < 0.05). The spatial distribution pattern of partial correlation between NDVI and Tmax differed from that of NDVI and Tmin. PLS-SEM results indicated that asymmetric warming (both Tmax and Tmin) had a consistent effect on vegetation development by directly promoting greening in the QTP, with NDVI values being more sensitive to Tmin, while topographic factors, especially elevation, mainly played an indirect role in influencing vegetation growth by affecting climate change. This study offers new insights into how vegetation responds to asymmetric warming and references for local ecological preservation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Response of vegetation in the Qinghai-Tibet Plateau to global warming
    Xu Weixin
    Liu Xiaodong
    CHINESE GEOGRAPHICAL SCIENCE, 2007, 17 (02) : 151 - 159
  • [2] Response of vegetation in the Qinghai-Tibet Plateau to global warming
    Weixin Xu
    Xiaodong Liu
    Chinese Geographical Science, 2007, 17 : 151 - 159
  • [3] Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming
    XU Weixin1
    2. Meteorological Institute of Qinghai Province
    3. Graduate University of Chinese Academy of Sciences
    Chinese Geographical Science, 2007, (02) : 151 - 159
  • [4] Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau
    Li, Lin
    Yang, Song
    Wang, Zhenyu
    Zhu, Xide
    Tang, Hongyu
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2010, 42 (04) : 449 - 457
  • [5] Combined Effects of Warming and Grazing on Rangeland Vegetation on the Qinghai-Tibet Plateau
    Chen, Chen
    Li, Tiejian
    Sivakumar, Bellie
    Sharma, Ashish
    Albertson, John D.
    Zhang, Li
    Wang, Guangqian
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2021, 9
  • [6] The Role of Winter Warming in Permafrost Change Over the Qinghai-Tibet Plateau
    Zhang, Guofei
    Nan, Zhuotong
    Wu, Xiaobo
    Ji, Hailong
    Zhao, Shuping
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (20) : 11261 - 11269
  • [7] Effects of Climate Variability and Human Activities on Vegetation Dynamics across the Qinghai-Tibet Plateau from 1982 to 2020
    Liu, Yiyang
    Xie, Yaowen
    Guo, Zecheng
    Xi, Guilin
    REMOTE SENSING, 2023, 15 (20)
  • [8] Spatio-Temporal Dynamics of Vegetation and Its Driving Mechanisms on the Qinghai-Tibet Plateau from 2000 to 2020
    Ma, Changhui
    Duan, Si-Bo
    Qin, Wenhua
    Wang, Feng
    He, Lei
    REMOTE SENSING, 2024, 16 (15)
  • [9] The Responses of Vegetation NPP Dynamics to the Influences of Climate-Human Factors on Qinghai-Tibet Plateau from 2000 to 2020
    Yuan, Xingming
    Guo, Bing
    Lu, Miao
    REMOTE SENSING, 2023, 15 (09)
  • [10] The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau
    Huang, Ke
    Zhang, Yangjian
    Zhu, Juntao
    Liu, Yaojie
    Zu, Jiaxing
    Zhang, Jing
    REMOTE SENSING, 2016, 8 (10)