Tangent complexes and the Diamond Lemma

被引:0
|
作者
Dotsenko, Vladimir [1 ,2 ]
Tamaroff, Pedro [3 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 rue Rene Descartes, F-67000 Strasbourg, France
[3] Johann von Neumann Haus Humboldt Univ Berlin, Inst Math, Rudower Chaussee 25, D-12489 Berlin, Germany
基金
爱尔兰科学基金会;
关键词
Deformation theory; Diamond Lemma; Grobner basis; multiplicative free resolution; rewriting system; tangent complex; GROBNER-SHIRSHOV BASES; PERTURBATION-THEORY; POLYGRAPHIC RESOLUTIONS; PROJECTIVE-RESOLUTIONS; FINITENESS CONDITION; HOMOLOGICAL ALGEBRA; MINIMAL MODELS; OPERADS; RING;
D O I
10.1142/S1664360723500133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion of uniqueness of normal forms for term rewriting in associative algebras. We revisit that result in the context of deformation theory and homotopical algebra; this leads to a new proof using multiplicative free resolutions. Specifically, our main result states that every such resolution of an algebra with monomial relations gives rise to its own Diamond Lemma, where Bergman's condition of "resolvable ambiguities" is precisely the first nontrivial component of the Maurer-Cartan equation in the corresponding tangent complex. The same approach works for many other algebraic structures, emphasizing the relevance of computing resolutions of algebras with monomial relations.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Diamond composites of high thermal conductivity and low dielectric loss tangent
    Osipov, A. S.
    Klimczyk, P.
    Rutkowski, P.
    Melniychuk, Y. A.
    Romanko, L. O.
    Podsiadlo, M.
    Petrusha, I. A.
    Jaworska, L.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 269
  • [22] Davies–Gaffney–Grigor’yan lemma on simplicial complexes
    Bobo Hua
    Xin Luo
    Mathematische Zeitschrift, 2018, 290 : 1041 - 1053
  • [23] Diamond-α tangent lines of time scales parametrized regular curves
    Dinu, C.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2009, 25 (01) : 55 - 60
  • [24] Davies-Gaffney-Grigor'yan lemma on simplicial complexes
    Hua, Bobo
    Luo, Xin
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 1041 - 1053
  • [26] Composition-Diamond Lemma for Non-associative Algebras over a Polynomial Algebra
    Chen, Yuqun
    Li, Jing
    Zeng, Mingjun
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (04) : 629 - 638
  • [27] A Bongartz-type lemma for silting complexes over a hereditary algebra
    Jinde Xu
    Yichao Yang
    Archiv der Mathematik, 2020, 114 : 383 - 389
  • [28] A Bongartz-type lemma for silting complexes over a hereditary algebra
    Xu, Jinde
    Yang, Yichao
    ARCHIV DER MATHEMATIK, 2020, 114 (04) : 383 - 389
  • [29] Boron-hydrogen complexes in diamond
    Goss, JP
    Briddon, PR
    Sque, SJ
    Jones, R
    PHYSICAL REVIEW B, 2004, 69 (16) : 165215 - 1
  • [30] Interstitial nitrogen and its complexes in diamond
    Goss, JP
    Briddon, PR
    Papagiannidis, S
    Jones, R
    PHYSICAL REVIEW B, 2004, 70 (23) : 1 - 15