MENDEL: Time series anomaly detection using transfer learning for industrial control systems

被引:1
|
作者
Park, Jeongyong [1 ]
Kim, Bedeuro [1 ]
Kim, Hyoungshick [1 ]
机构
[1] Sungkyunkwan Univ, Dept Comp Sci & Engn, Suwon, South Korea
关键词
industrial control systems (ICS); anomaly detection; transfer learning; feature mapping;
D O I
10.1109/BigComp57234.2023.00049
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning is commonly used to detect anomalies in industrial control systems (ICS). In general, building an anomaly detection model requires massive training data and computational resources. Therefore, an ideal solution is to use a pre-trained model instead of building each model completely from scratch. However, we cannot directly use a pre-trained model because each ICS dataset has its own unique features and characteristics. This paper proposes a practical transfer learning technique dubbed MENDEL (tiMe sEries aNomaly Detection using transfEr Learning) to efficiently build anomaly detection models, respectively, for different ICS domains. MENDEL first applies principal components analysis (PCA) to each model to obtain a fixed number of reduced features compatible with other models and then finds a reasonable mapping between different models' reduced features systemically for effective transfer learning. We evaluate the performance of MENDEL on two datasets (SWaT and WADI) with two models (InterFusion and USAD). Our evaluation results show that MENDEL can overall achieve high F1 scores even when a model is retrained with only a small proportion of the training dataset. For example, when we first train InterFusion with the SWaT train dataset and then retrain the trained model with only 10% of the entire WADI train dataset, the retrained InterFusion achieves an F1 score of 72%, which is better than an F1 score of 44% achieved by InterFusion with the entire SWAT training dataset.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 50 条
  • [21] Anomaly Detection Dataset for Industrial Control Systems
    Dehlaghi-Ghadim, Alireza
    Moghadam, Mahshid Helali
    Balador, Ali
    Hansson, Hans
    IEEE ACCESS, 2023, 11 : 107982 - 107996
  • [22] Anomaly detection in Industrial Control Systems using Logical Analysis of Data
    Das, Tanmoy Kanti
    Adepu, Sridhar
    Zhou, Jianying
    COMPUTERS & SECURITY, 2020, 96
  • [23] Federated Learning-Based Explainable Anomaly Detection for Industrial Control Systems
    Huong, Truong Thu
    Bac, Ta Phuong
    Ha, Kieu Ngan
    Hoang, Nguyen Viet
    Hoang, Nguyen Xuan
    Hung, Nguyen Tai
    Tran, Kim Phuc
    IEEE ACCESS, 2022, 10 : 53854 - 53872
  • [24] A real-time network based anomaly detection in industrial control systems
    Zare, Faeze
    Mahmoudi-Nasr, Payam
    Yousefpour, Rohollah
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2024, 45
  • [25] Anomaly Detection on Industrial Time Series Based on Correlation Analysis
    Ding X.-O.
    Yu S.-J.
    Wang M.-X.
    Wang H.-Z.
    Gao H.
    Yang D.-H.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (03): : 726 - 747
  • [26] Anomaly Detection on Time-series Logs for Industrial Network
    Chen, Lin
    Kuang, Xiaoyun
    Xu, Aidong
    Suo, Siliang
    Yang, Yiwei
    2020 3RD INTERNATIONAL CONFERENCE ON SMART BLOCKCHAIN (SMARTBLOCK), 2020, : 81 - 86
  • [27] A data-efficient active learning architecture for anomaly detection in industrial time series data
    Holtz, David
    Kaymakci, Can
    Leuthe, Daniel
    Wenninger, Simon
    Sauer, Alexander
    FLEXIBLE SERVICES AND MANUFACTURING JOURNAL, 2025,
  • [28] Self-Supervised Learning for Time-Series Anomaly Detection in Industrial Internet of Things
    Duc Hoang Tran
    Van Linh Nguyen
    Huy Nguyen
    Yeong Min Jang
    ELECTRONICS, 2022, 11 (14)
  • [29] A Control Flow Anomaly Detection Algorithm for Industrial Control Systems
    Zhang, Zhigang
    Chang, Chaowen
    Lv, Zhuo
    Han, Peisheng
    Wang, Yutong
    2018 1ST INTERNATIONAL CONFERENCE ON DATA INTELLIGENCE AND SECURITY (ICDIS 2018), 2018, : 286 - 293
  • [30] Deep Learning for Time Series Anomaly Detection: A Survey
    Darban, Zahra zamanzadeh
    Webb, Geoffrey i.
    Pan, Shirui
    Aggarwal, Charu
    Salehi, Mahsa
    ACM COMPUTING SURVEYS, 2025, 57 (01)