L(2,1)-Labeling of the Iterated Mycielski Graphs of Graphs and Some Problems Related to Matching Problems

被引:4
|
作者
Dliou, Kamal [1 ]
El Boujaoui, Hicham [1 ]
Kchikech, Mustapha [2 ]
机构
[1] Ibn Zohr Univ, Natl Sch Appl Sci ENSA, BP 1136, Agadir, Morocco
[2] Polydisciplinary Fac Safi, Modeling & Combinatorial Lab, BP 4162, Safi 46000, Morocco
关键词
frequency assignment; L(2; 1)-labeling; Mycielski construction; matching; CHROMATIC NUMBER; LABELING GRAPHS;
D O I
10.7151/dmgt.2457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the L(2, 1)-labeling of the Mycielski graph and the iterated Mycielski graph of graphs in general. For a graph G and all t >= 1, we give sharp bounds for lambda(M-t(G)) the L(2, 1)-labeling number of the t-th iterated Mycielski graph in terms of the number of iterations t, the order n of G, the maximum degree Delta, and lambda(G) the L(2, 1)-labeling number of G. For t = 1, we present necessary and sufficient conditions between the 4-star matching number of the complement graph and lambda(M(G)) the L(2, 1)-labeling number of the Mycielski graph of a graph, with some applications to special graphs. For all t >= 2, we prove that for any graph G of order n, we have 2(t)(-1)(n + 2) - 2 <= lambda(M-t(G)) <= 2(t)(n + 1) - 2. Thereafter, we characterize the graphs achieving the upper bound 2(t)(n+1)-2, then by using the Marriage Theorem and Tutte's characterization of graphs with a perfect 2-matching, we characterize all graphs without isolated vertices achieving the lower bound 2(t)(-1)(n + 2) - 2. We determine the L(2, 1)-labeling number for the Mycielski graph and the iterated Mycielski graph of some graph classes.
引用
收藏
页码:489 / 518
页数:30
相关论文
共 50 条
  • [31] THE L(2,1)-F-LABELING PROBLEM OF GRAPHS
    Chang, Gerard J.
    Lu, Changhong
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1277 - 1285
  • [32] On the L(2,1)-labeling conjecture for brick product graphs
    Shao, Zehui
    Zhang, Xiaosong
    Jiang, Huiqin
    Wang, Bo
    He, Juanjuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 706 - 724
  • [33] L(2,1)-labeling of perfect elimination bipartite graphs
    Panda, B. S.
    Goel, Preeti
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1878 - 1888
  • [34] The L(2,1)-labeling on graphs and the frequency assignment problem
    Shao, Zhendong
    Yeh, Roger K.
    Zhang, David
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 37 - 41
  • [35] On the complexity of exact algorithm for L(2,1)-labeling of graphs
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    INFORMATION PROCESSING LETTERS, 2011, 111 (14) : 697 - 701
  • [36] Fast Exact Algorithm for L(2,1)-Labeling of Graphs
    Junosza-Szaniawski, Konstanty
    Kratochvil, Jan
    Liedloff, Mathieu
    Rossmanith, Peter
    Rzazewski, Pawel
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 82 - 93
  • [37] Fast exact algorithm for L(2,1)-labeling of graphs
    Junosza-Szaniawski, Konstanty
    Kratochvil, Jan
    Liedloff, Mathieu
    Rossmanith, Peter
    Rzazewski, Pawel
    THEORETICAL COMPUTER SCIENCE, 2013, 505 : 42 - 54
  • [38] On Improved Exact Algorithms for L(2,1)-Labeling of Graphs
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    COMBINATORIAL ALGORITHMS, 2011, 6460 : 34 - 37
  • [39] Coloring and labeling problems on graphs
    University of Illinois at Urbana-Champaign
    1600,
  • [40] L(2,1)-labeling of some zero-divisor graphs associated with commutative rings
    Ali, Annayat
    Raja, Rameez
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (02) : 355 - 369