N-Doped Carbon Nanotubes Nucleated through Cobalt Nanoparticles as Bifunctional Catalysts for Zinc-Air Batteries

被引:11
|
作者
Kumar, Sarvesh [1 ]
Kumar, Rajeev [1 ]
Goyal, Naveen [1 ]
Vazhayil, Ashalatha [2 ]
Yadav, Ankit [1 ]
Thomas, Nygil [2 ]
Sahoo, Balaram [1 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Nirmalagiri Coll, Dept Chem, Kannur 670701, Kerala, India
关键词
N-doped carbon nanotube; cobalt nanoparticles; electrocatalyst; Zn-air battery; redox reactions; basic medium; OXYGEN REDUCTION REACTION; EFFICIENT ELECTROCATALYST; CO NANOPARTICLES; FACILE SYNTHESIS; EVOLUTION; GRAPHENE; FE; NANOSTRUCTURES; ZN; PERFORMANCE;
D O I
10.1021/acsanm.4c00479
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We introduce an environmentally sustainable approach to create uniformly nitrogen-incapacitated carbon nanotubes nucleated through cobalt nanoparticles. A unique architecture involving carbon shells on Co nanoparticles exists along with the surface morphology prompted by the existence of various nitrogen moieties. The Co nanoparticles are covered by graphitic carbon shells and confined within a defective porous carbon framework, enhancing the surface area and porosity and exposing large active centers for catalytic activities. Our approach uses a single-step in situ synthesis process, which yields these exceptionally good bifunctional electrocatalysts for oxygen evolution reaction, oxygen reduction reaction, and zinc-air battery applications. These massive active centers and pores provide the advantage of exceptional oxygen reduction reaction (ORR) performance. Our samples with Co-embedded carbon nanotubes with optimal N-doping exhibit a higher half-wave potential (E-1/2) of similar to 0.882 V vs a reversible hydrogen electrode (RHE) compared to a standard Pt/C electrode (similar to 0.874 V vs RHE) in aqueous 0.1 M KOH solution, at the same catalyst-mass loading. For zinc-air batteries, our samples, as air-reducing catalysts, exhibit a high open-circuit voltage of 1.512 V and an impressive peak power density (150.6 mW cm(-2)), which surpasses the commercial Pt/C + RuO2 catalysts (92.4 mW cm(-2)), as well as many reported bifunctional electrocatalysts. Hence, our samples are potential candidates for the coherent depiction of multifunctional, efficient, and durable electrocatalysts for the straightforward, inexpensive, and scalable fabrication of rechargeable zinc-air batteries.
引用
收藏
页码:7865 / 7882
页数:18
相关论文
共 50 条
  • [31] Cobalt Nanoparticles Embedded in N-Doped Carbon Nanotubes on Reduced Graphene Oxide as Efficient Oxygen Catalysts for Zn-Air Batteries
    Peng, Xiaomin
    Wei, Licheng
    Liu, Yiyi
    Cen, Tianlun
    Ye, Zhifeng
    Zhu, Zhaogen
    Ni, Zhaotong
    Yuan, Dingsheng
    ENERGY & FUELS, 2020, 34 (07) : 8931 - 8938
  • [32] N-Doped Carbon Nanotubes Derived from Graphene Oxide with Embedment of FeCo Nanoparticles as Bifunctional Air Electrode for Rechargeable Liquid and Flexible All-Solid-State Zinc-Air Batteries
    Hao, Xiaoqiong
    Jiang, Zhongqing
    Zhang, Baoan
    Tian, Xiaoning
    Song, Changsheng
    Wang, Likui
    Maiyalagan, Thandavarayan
    Hao, Xiaogang
    Jiang, Zhong-Jie
    ADVANCED SCIENCE, 2021, 8 (10)
  • [33] Dispersed cobalt nanoparticles in the nitrogen doped carbon black as efficient catalysts for oxygen reduction reaction and Zinc-Air batteries
    Luo, Li
    Xu, Yan
    Wang, Dongsheng
    Qiu, Xiaoqing
    CHEMICAL ENGINEERING SCIENCE, 2023, 273
  • [34] Co-Fe3C nanoparticles encapsulated in N-doped carbon matrix carbon as bifunctional electrocatalyst for oxygen reaction and reversible zinc-air batteries
    Chen, Xu
    Hu, Jinsong
    Wang, Cuiping
    Diana, Chungu
    Wang, Xilong
    Li, Zhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
  • [35] CoFe2O4 nanoparticles decorated carbon nanotubes: Air-cathode bifunctional catalysts for rechargeable zinc-air batteries
    Xu, Nengneng
    Qiao, Jinli
    Nie, Qi
    Wang, Min
    Xu, He
    Wang, Yudong
    Zhou, Xiao-Dong
    CATALYSIS TODAY, 2018, 318 : 144 - 149
  • [36] CoMn2O4 nanoparticles supported on defect-rich N-doped carbon nanotubes as air electrode in rechargeable zinc-air batteries
    Bejar, Jose
    Espinosa-Magana, Francisco
    Valdiviezo-Godina, Norberto
    Aguilar-Elguezabal, Alfredo
    Guerra-Balcazar, Minerva
    Arjona, Noe
    Alvarez-Contreras, Lorena
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 947
  • [37] Intermetallic Pd-Y nanoparticles/N-doped carbon nanotubes as multi-active catalysts for oxygen reduction reaction, ethanol oxidation reaction, and zinc-air batteries
    Roy, Nipa
    Ahmed, Mohammad Shamsuddin
    Lee, Hyo Kyoung
    Jeon, Seungwon
    NANOSCALE, 2024, 16 (15) : 7532 - 7546
  • [38] Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc-air batteries
    Song, Junhua
    Zhu, Chengzhou
    Fu, Shaofang
    Song, Yang
    Du, Dan
    Lin, Yuehe
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (13) : 4864 - 4870
  • [39] Encapsulation of FeCo-Co Nanoparticles in N-Doped Carbon Nanotubes as Bifunctional Catalysts for Zn-Air Battery
    Liu, Xiaochao
    Peng, Siyuan
    Li, Xiaoxiao
    Liu, Chao
    Zeng, Jinming
    Qi, Xiaopeng
    Liang, Tongxiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [40] Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries
    Liu, Shaojun
    Amiinu, Ibrahim Saana
    Liu, Xiaobo
    Zhang, Jian
    Bao, Mingjun
    Meng, Tian
    Mu, Shichun
    CHEMICAL ENGINEERING JOURNAL, 2018, 342 : 163 - 170