Road Extraction by Multiscale Deformable Transformer From Remote Sensing Images

被引:14
|
作者
Hu, Peng-Cheng [1 ]
Chen, Si-Bao [1 ]
Huang, Li-Li [1 ]
Wang, Gui-Zhou [2 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Zenmorn AHU AI Joint Lab, MOE Key Lab ICSP,IMIS Lab Anhui Prov,Anhui Prov Ke, Hefei 230601, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiscale deformable transformer; remote sensing; road extraction; self-attention mechanism;
D O I
10.1109/LGRS.2023.3299985
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Rapid progress has been made in the research of high-resolution remote sensing road extraction tasks in the past years but due to the diversity of road types and the complexity of road context, extracting the perfect road network is still fraught with difficulties and challenges. Many convolutional neural networks (CNNs) based on encoder-decoder structures have demonstrated their effectiveness. Transformer's self-attention mechanism shows more powerful performance than CNNs in modeling global feature dependencies. In this letter, we propose a multiscale deformable transformer network (MDTNet) based on encoder-decoder structure to extract road networks from remote sensing images. The core of MDTNet is our proposed multiscale deformable self-attention (MDSA) mechanism. MDSA can capture more comprehensive features than conventional self-attention. In addition, roads are not present in certain blocks of areas like other objects, but are interwoven throughout the image in such a long, linear fashion that information about certain road segments may be overlooked. To minimize residual errors in road segmentations, our MDSA incorporates a deformable design on feature maps, which effectively enhances the salience of road features relative to their surroundings. Extensive experiments on several public remote sensing road datasets show that our MDTNet achieves higher segmentation [F1 score and intersection over union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Road extraction from high-resolution remote sensing images based on HRNet
    Chen X.
    Liu Z.
    Zhou S.
    Yu H.
    Liu Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (04): : 1167 - 1173
  • [42] Methods and Prospects of Road and Linear Structure Automatic Extraction from Remote Sensing Images
    LIU Zhengrong LIU Zhengrong
    Geo-Spatial Information Science, 2003, (02) : 63 - 68
  • [43] Modulation Learning on Fourier-Domain for Road Extraction From Remote Sensing Images
    Yang, Jing
    Liu, Huajun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [44] Road Extraction From Remote Sensing Images in Wildland-Urban Interface Areas
    Chen, Ruonan
    Li, Xiang
    Hu, Yuan
    Wen, Congcong
    Peng, Ling
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [45] Features and Methods of Road Extraction from High-resolution Remote Sensing Images
    You, Guoping
    Zeng, Wanghui
    2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2019,
  • [46] Road extraction from high-resolution remote sensing images with spatial continuity
    Remote Sensing and GIS Application Laboratory, Xinjiang Ecology and Geography Institute, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
    不详
    Wuhan Daxue Xuebao Xinxi Kexue Ban, 11 (1298-1301):
  • [47] A Research of Road Centerline Extraction Algorithm from High Resolution Remote Sensing Images
    Zhang, Yushan
    Xu, Tingfa
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XL, 2017, 10396
  • [48] Road extraction from high-resolution remote sensing images based on characteristics
    Yu, Jie
    Qin, Huiling
    Yan, Qin
    Tan, Ming
    Zhang, Guoning
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [49] Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet
    Xin, Jiang
    Zhang, Xinchang
    Zhang, Zhiqiang
    Fang, Wu
    REMOTE SENSING, 2019, 11 (21)
  • [50] Clustering Feature Constraint Multiscale Attention Network for Shadow Extraction From Remote Sensing Images
    Xie, Yakun
    Feng, Dejun
    Shen, Xingyu
    Liu, Yangge
    Zhu, Jun
    Hussain, Tanveer
    Baik, Sung Wook
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60