A dual-stage large-scale multi-objective evolutionary algorithm with dynamic learning strategy

被引:5
|
作者
Cao, Jie [1 ,2 ]
Guo, Kaiyue [1 ,2 ]
Zhang, Jianlin [1 ,2 ]
Chen, Zuohan [1 ,2 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun Technol, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Gansu Engn Res Ctr Mfg Informat, Lanzhou 730050, Peoples R China
关键词
Large-scale optimization; Multi-objective optimization; Dual-stage optimization strategy; Dynamic learning strategy; DIFFERENTIAL EVOLUTION; SWARM OPTIMIZER; FRAMEWORK;
D O I
10.1016/j.eswa.2023.120184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale multi-objective optimization problems (LSMOPs) bring significant challenges due to their large number of decision variables. Most of the existing algorithms fail to obtain high-quality solutions for the LSMOPs. To remedy this issue, an algorithm named dual-stage large-scale multi-objective evolutionary algorithm with dynamic learning strategy (DLMOEA-DLS) is proposed in this paper. In the DLMOEA-DLS, the entire evo-lution process mainly includes two stages, and each stage plays a different role in the searching process. In the first stage, the decision variables are clustering into two categories to be optimized independently for the convergence of the population. In the second stage, a dynamic learning strategy is designed to generate new offspring, in which each solution learns from a leader with better fitness and coupled control parameter for each solution is adaptively updated by learning from the historical behaviors of the solution. Moreover, an envi-ronmental selection operator is adopted to reserve promising solutions for the next iteration. To verify the performance of the DLMOEA-DLS, five state-of-the-art algorithms are used for comparison on 36 LSMOP benchmark instances, 48 LMF benchmark instances, and 6 real-world TREE benchmark instances. The experi-mental results demonstrate the superiority of the DLMOEA-DLS over the five state-of-the-art algorithms.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems
    Liu, Ruochen
    Ren, Rui
    Liu, Jin
    Liu, Jing
    APPLIED SOFT COMPUTING, 2020, 89
  • [22] A large-scale multi-objective evolutionary algorithm based on importance rankings and information feedback
    Jie Cao
    Kaiyue Guo
    Jianlin Zhang
    Zuohan Chen
    Artificial Intelligence Review, 2023, 56 : 14803 - 14840
  • [23] A multi-objective evolutionary algorithm based on length reduction for large-scale instance selection
    Cheng, Fan
    Chu, Feixiang
    Zhang, Lei
    INFORMATION SCIENCES, 2021, 576 : 105 - 121
  • [24] An adaptive fitness evolutionary algorithm for sparse large-scale multi-objective optimization problems
    Zhang, Ge
    Wu, Ni
    Shen, Chaonan
    Zhang, Kai
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 473 - 479
  • [25] A Multi-objective Evolutionary Algorithm for Emergency Logistics Scheduling in Large-scale Disaster Relief
    Gan, Xiaohui
    Liu, Jing
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 51 - 58
  • [26] Dynamic multi-objective evolutionary optimization algorithm based on two-stage prediction strategy
    Guo, Zeyin
    Wei, Lixin
    Fan, Rui
    Sun, Hao
    Hu, Ziyu
    ISA TRANSACTIONS, 2023, 139 : 308 - 321
  • [27] A multi-granularity clustering based evolutionary algorithm for large-scale sparse multi-objective optimization
    Tian, Ye
    Shao, Shuai
    Xie, Guohui
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [28] Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization
    Wang Y.
    Li B.
    Memetic Computing, 2010, 2 (1) : 3 - 24
  • [29] A dynamic multi-objective evolutionary algorithm based on Niche prediction strategy
    Zheng J.
    Zhang B.
    Zou J.
    Yang S.
    Hu Y.
    Applied Soft Computing, 2023, 142
  • [30] Cooperative tri-population based evolutionary algorithm for large-scale multi-objective optimization
    Zhang, Weiwei
    Wang, Sanxing
    Li, Guoqing
    Zhang, Weizheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227