Prototype-oriented contrastive learning for semi-supervised medical image segmentation

被引:3
|
作者
Liu, Zihang [1 ]
Zhang, Haoran [1 ]
Zhao, Chunhui [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Medical image segmentation; Contrastive learning;
D O I
10.1016/j.bspc.2023.105571
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Semi-supervised learning has been recently explored to advance medical image segmentation due to the challenges of acquiring sufficient labeled data. However, the mainstream semi-supervised learning methods leverage unlabeled data by enforcing the perturbation-based prediction consistency, which neglects the semantic relations across different images and cannot handle inductive bias problem about the feature distribution. To address the above problems, in this paper, a novel prototype-oriented contrastive learning framework is proposed for semi supervised medical image segmentation. Specifically, inspired from prototypical learning, a set of prototypes is extracted first to represent the diverse feature distributions of different images. Then we present semi-supervised contrastive learning with a prototype-oriented sampling strategy, encouraging the network to explore voxel-wise semantic relations across different images and learn more discriminative features to enhance the segmentation ability. The effectiveness of the proposed method is illustrated on three public benchmark datasets. Extensive experiments show that the proposed method outperforms several state-of-the-art semi-supervised segmentation methods, demonstrating its effectiveness for the challenging semi-supervised medical image segmentation task.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation
    You, Chenyu
    Dai, Weicheng
    Min, Yifei
    Staib, Lawrence
    Duncan, James S.
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 : 641 - 653
  • [32] Contrastive Semi-Supervised Learning for Image Highlight Removal
    Li, Pengyue
    Li, Xiaolan
    Li, Wentao
    Xu, Xinying
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1334 - 1338
  • [33] Own-background contrastive learning guided by pseudo-label for semi-supervised medical image segmentation
    Fan, Huijie
    Cao, Jinghan
    Chen, Xi'ai
    Lin, Sen
    Polat, Kemal
    Zhou, Jingchun
    APPLIED SOFT COMPUTING, 2025, 171
  • [34] Dual-stream-based dense local features contrastive learning for semi-supervised medical image segmentation
    Huang, Zheng
    Gai, Di
    Min, Weidong
    Wang, Qi
    Zhan, Lixin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [35] Reliable semi-supervised mutual learning framework for medical image segmentation
    Hang, Wenlong
    Bai, Kui
    Liang, Shuang
    Zhang, Qingfeng
    Wu, Qiang
    Jin, Yukun
    Wang, Qiong
    Qin, Jing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [36] Inherent Consistent Learning for Accurate Semi-supervised Medical Image Segmentation
    Zhu, Ye
    Yang, Jie
    Liu, Si-Qi
    Zhang, Ruimao
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1581 - 1601
  • [37] Semi-Supervised Learning With Fact-Forcing for Medical Image Segmentation
    Bui, Phuoc-Nguyen
    Le, Duc-Tai
    Bum, Junghyun
    Kim, Seongho
    Song, Su Jeong
    Choo, Hyunseung
    IEEE ACCESS, 2023, 11 : 99413 - 99425
  • [38] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [39] Semi-supervised medical image segmentation network based on mutual learning
    Sun, Junmei
    Wang, Tianyang
    Wang, Meixi
    Li, Xiumei
    Xu, Yingying
    MEDICAL PHYSICS, 2025, 52 (03) : 1589 - 1600
  • [40] Multidimensional perturbed consistency learning for semi-supervised medical image segmentation
    Yuan, Enze
    Zhao, Bin
    Qin, Xiao
    Ding, Shuxue
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)