Enhanced Gas Adsorption on Cu3(BTC)2 Metal-Organic Framework by Post-Synthetic Cation Exchange and Computational Analysis

被引:5
|
作者
Veleta, Jose M. [1 ]
Arrieta, Roy A. [1 ]
Wu, Yanyu [1 ]
Baeza, Miguel A. [1 ]
Castaneda, Karen [1 ]
Villagran, Dino [1 ]
机构
[1] Univ Texas El Paso, Dept Chem & Biochem, El Paso, TX 79968 USA
关键词
CARBON CAPTURE; BASIS-SETS; CO2; MOFS; CU; THERMOCHEMISTRY; HYDROPHILICITY; ACTIVATION; HYDROGEN; HKUST-1;
D O I
10.1021/acs.langmuir.3c00455
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increased gas adsorption in a series of post-syntheticallymodifiedmetal-organic frameworks (MOFs) of the type HKUST-1 was achievedby the partial cation exchange process. Manipulation of post-syntheticconditions demonstrates high tunability in the site substitution andgas adsorption properties during the dynamic equilibrium process.In this work, post-synthetic modification of Cu-3(BTC)(2) is carried on by exposure to TM2+ solutions (TM= Mn, Fe, Co, Ni) at different time intervals. The crystal structure,composition, and morphology were studied by powder X-ray diffraction,Fourier-transform infrared spectroscopy, inductively coupled plasmaoptical emission spectroscopy, and scanning electron microscopy. Structuralanalysis supports the retention of the crystal structure and partialsubstitution of the Cu metal nodes within the framework. A linearincrease in the transmetalation process is observed with Fe and Cowith a maximum percentage of 39 and 18%, respectively. Conversely,relatively low cation exchange is observed with Mn having a maximumpercentage of 2.40% and Ni with only 2.02%. Gas adsorption measurementsand surface area analysis were determined for each species. Interestingly,(Cu/Mn)(3)(BTC)(2) revealed the highest CO2 adsorption capacity of 5.47 mmol/g, compared to 3.08 mmol/g forCu(3)(BTC)(2). The overall increased gas adsorptioncan be attributed to the formation of defects in the crystal structureduring the cation exchange process. These results demonstrate theoutstanding potential of post-synthetic ion exchange as a generalapproach to fine-tuning the physical properties of existing MOF architectures.
引用
收藏
页码:8091 / 8099
页数:9
相关论文
共 50 条
  • [31] Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study
    Wang, Sanyue
    Yang, Qingyuan
    Zhong, Chongli
    SEPARATION AND PURIFICATION TECHNOLOGY, 2008, 60 (01) : 30 - 35
  • [32] Post-synthetic exchange in a zirconium metal-organic framework for efficient photoreduction of CO2 to formate
    Chandran, Akhil P.
    Radha, Govu
    Meenu, P. C.
    Roy, Sounak
    Aggarwal, Himanshu
    MATERIALS ADVANCES, 2024, 5 (17): : 6936 - 6943
  • [33] Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound CU3(BTC)2
    Schlichte, K
    Kratzke, T
    Kaskel, S
    MICROPOROUS AND MESOPOROUS MATERIALS, 2004, 73 (1-2) : 81 - 88
  • [34] Influence of Water on the Chemistry and Structure of the Metal Organic Framework Cu3(btc)2
    Singh, Manish P.
    Dhumal, Nilesh R.
    Kim, Hyung J.
    Kiefer, Johannes
    Anderson, James A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (31): : 17323 - 17333
  • [35] Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption
    Lu X.-T.
    Pu Y.-F.
    Li L.
    Zhao N.
    Wang F.
    Xiao F.-K.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2019, 47 (03): : 338 - 343
  • [36] Post-synthetic pillaring enhances metal-organic framework capacitance
    Richards, Victoria
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [37] The Surprising Stability of Cu3(btc)2 Metal-Organic Framework under Steam Flow at High Temperature
    Giovine, Raynald
    Pourpoint, Frederique
    Duval, Sylvain
    Lafon, Olivier
    Amoureux, Jean-Paul
    Loiseau, Thierry
    Volkringer, Christophe
    CRYSTAL GROWTH & DESIGN, 2018, 18 (11) : 6681 - 6693
  • [38] Anhydride Post-Synthetic Modification in a Hierarchical Metal-Organic Framework
    Chen, Shoushun
    Song, Zhongxin
    Lyu, Jinghui
    Guo, Ying
    Lucier, Bryan E. G.
    Luo, Wilson
    Workentin, Mark S.
    Sun, Xueliang
    Huang, Yining
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (09) : 4419 - 4428
  • [39] Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study
    Getzschmann, Juergen
    Senkovska, Irena
    Wallacher, Dirk
    Tovar, Michael
    Fairen-Jimenez, David
    Dueren, Tina
    van Baten, Jasper M.
    Krishna, Rajamani
    Kaskel, Stefan
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 136 (1-3) : 50 - 58
  • [40] Solvent-Mediated Reconstruction of the Metal-Organic Framework HKUST-1 (Cu3(BTC)2)
    Majano, Gerardo
    Martin, Oliver
    Hammes, Markus
    Smeets, Stef
    Baerlocher, Christian
    Perez-Ramirez, Javier
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (25) : 3855 - 3865