Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations

被引:3
|
作者
Wali, Mubashara [1 ]
Arshad, Sadia [1 ]
Eldin, Sayed M. [2 ]
Siddique, Imran [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[2] Future Univ Egypt, Fac Engn, Ctr Res, New Cairo 11835, Egypt
[3] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
fractional diffusion equation; numerical approximation; Atangana-Baleanu Caputo derivative; non-singular kernel; stability-convergence;
D O I
10.3934/math.2023772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we attempt to obtain the approximate solution for the time-space fractional linear and nonlinear diffusion equations. A finite difference approach is given for the solution of both linear and nonlinear fractional order diffusion problems. The Riesz fractional derivative in space is specifically approximated using the centered difference scheme. A system of Atangana-Baleanu Caputo equations that have been converted through spatial discretization is solved using a newly developed modified Simpson's 1/3 formula. A study of the proposed scheme is done to ascertain its stability and convergence. It has been shown that for mesh size h and time steps delta t the recommended method converges at a rate of O(delta t2 + h2). Based on graphic results and numerical examples, the application of the model is also examined.
引用
收藏
页码:15129 / 15147
页数:19
相关论文
共 50 条
  • [31] On Nonlinear Hybrid Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative
    Sutar, Sagar T.
    Kucche, Kishor D.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [32] ANALYTICAL TREATMENTS TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH MODIFIED ATANGANA-BALEANU DERIVATIVE
    Al-Refai, Mohammed
    Syam, Muhammed I.
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [33] On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Kucche, Kishor D.
    Alqudah, Manar A.
    Ali, Saeed M.
    Jeelani, Mdi Begum
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [34] Numerical analysis of dissipative system with noise model with the Atangana-Baleanu fractional derivative
    Alkahtani, Badr Saad T.
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 239 - 248
  • [35] Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model
    Algahtani, Obaid Jefain Julaighim
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 552 - 559
  • [36] Univariate and Multivariate Ostrowski-Type Inequalities Using Atangana-Baleanu Caputo Fractional Derivative
    Desta, Henok Desalegn
    Pachpatte, Deepak B.
    Mijena, Jebessa B.
    Abdi, Tadesse
    AXIOMS, 2022, 11 (09)
  • [37] Numerical Methods for Fractional-Order Fornberg-Whitham Equations in the Sense of Atangana-Baleanu Derivative
    Iqbal, Naveed
    Yasmin, Humaira
    Ali, Akbar
    Bariq, Abdul
    Al-Sawalha, M. Mossa
    Mohammed, Wael W.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [38] New modied Atangana-Baleanu fractional derivative applied to solve nonlinear fractional dierential equations
    Yepez-Martinez, H.
    Gomez-Aguilar, J. F.
    Inc, Mustafa
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [39] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    RESULTS IN PHYSICS, 2023, 53
  • [40] Existence and data dependence results for fractional differential equations involving atangana-baleanu derivative
    Sagar T. Sutar
    Kishor D. Kucche
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 647 - 663