Scaled-up aqueous redox flow battery using anthraquinone negalyte and vanadium posilyte with inorganic additive

被引:3
|
作者
Park, Gyunho [1 ]
Jeong, Hayoung [2 ]
Lee, Wonmi [1 ]
Han, Jeong Woo [2 ]
Chang, Duck Rye [3 ]
Kwon, Yongchai [1 ,4 ,5 ]
机构
[1] Seoul Natl Univ Sci & Technol, Grad Sch Energy & Environm, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Korea Inst Ind Technol, Gwangju Res Ctr, Gwangju 506824, South Korea
[4] Seoul Natl Univ Sci & Technol, Dept Chem & Biomol Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[5] Seoul Natl Univ Sci & Technol, Dept Chem & Biomol Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Anthraquinone-27-disulfonic acid; Vanadium oxide sulfate; Manganese sulfate; One kW aqueous redox flow battery stack; Cycle stability; ELECTROLYTE; PERFORMANCE; CAPACITY; MEMBRANE;
D O I
10.1016/j.apenergy.2023.122171
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, one kilowatt aqueous redox flow battery (ARFB) using anthraquinone-2,7-disulfonic acid (2,7-AQDS) and vanadium oxide sulfate (VOSO4) as active materials for negalyte (negative electrolyte) and posilyte (positive electrolyte) is successfully accomplished. Then, manganese sulfate (MnSO4) is further included in negalyte to increase reactivity of active materials and to suppress their crossover by controlling their osmotic pressure. This binary effects of MnSO4 are predicted by density functional theory and reduction in concentration gap. The decrease in energy band gap of 2,7-AQDS with MnSO4 facilitated electron transfer rate. Anodic and cathodic diffusion coefficient and reaction rate constant are also improved. More specifically, with adoption of MnSO4 additive, energy efficiency and capacity retention rate of ARFB single cells operated with MnSO4 additive are improved from 79.1 to 83.9% at the current density of 40 mA cm-2 and from 82 to 88% at the current density of 80 mA cm-2 after 100 cycles. Based on that, ARFB stack using 2,7-AQDS and VOSO4 with MnSO4 additive is prepared and this ARFB stack exhibits a high power of 1.15 kW.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery
    Shinkle, Aaron A.
    Sleightholme, Alice E. S.
    Griffith, Lucas D.
    Thompson, Levi T.
    Monroe, Charles W.
    JOURNAL OF POWER SOURCES, 2012, 206 : 490 - 496
  • [22] Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery
    Sung, Ki-Won
    Shin, Sung-Hee
    Moon, Seung-Hyeon
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (05): : 615 - 621
  • [23] Influence of Trishydroxymethyl Aminomethane as a Positive Electrolyte Additive on Performance of Vanadium Redox Flow Battery
    Peng, Sui
    Wang, Nangfang
    Gao, Chao
    Lei, Ying
    Liang, Xingxing
    Liu, Suqin
    Liu, Younian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (03): : 2440 - 2447
  • [24] Influence of Trishydroxymethyl Aminomethane as a Positive Electrolyte Additive on Performance of Vanadium Redox Flow Battery
    Peng, Sui
    Wang, Nangfang
    Gao, Chao
    Lei, Ying
    Liang, Xingxing
    Liu, Suqin
    Liu, Younian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (05): : 4314 - 4321
  • [25] Stability of Positive Electrolyte Containing Trishydroxymethyl Aminomethane Additive for Vanadium Redox Flow Battery
    Peng, Sui
    Wang, Nangfang
    Gao, Chao
    Lei, Ying
    Liang, Xingxing
    Liu, Suqin
    Liu, Younian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (05): : 4388 - 4396
  • [26] High-performance aqueous redox flow battery using nontoxic organic-inorganic electrolyte
    Lin, Kaixiang
    Chen, Qing
    Marshak, Michael
    Gerhardt, Michael
    Tong, Liuchuan
    Eisenach, Louise
    Gordon, Roy
    Aziz, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [27] Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple
    Lee, Wonmi
    Permatasari, Agnesia
    Kwon, Yongchai
    Journal of Materials Chemistry C, 2020, 8 (17): : 5727 - 5731
  • [28] Vanadium Redox Flow Battery Using Aemion™ Anion Exchange Membranes
    Lallo, Elias
    Khataee, Amirreza
    Lindstroem, Rakel Wreland
    PROCESSES, 2022, 10 (02)
  • [29] Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple
    Lee, Wonmi
    Permatasari, Agnesia
    Kwon, Yongchai
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (17) : 5727 - 5731
  • [30] Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery
    Wang, Nanfang
    Chen, Yong
    Han, Huiguo
    Cao, Min
    Bi, Xinqiang
    Peng, Sui
    Cheng, Xingde
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (04): : 2893 - 2908