Towards Realistic Long-Tailed Semi-Supervised Learning: Consistency Is All You Need

被引:15
|
作者
Wei, Tong [1 ]
Gan, Kai [1 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 210096, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR52729.2023.00338
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While long-tailed semi-supervised learning (LTSSL) has received tremendous attention in many real-world classification problems, existing LTSSL algorithms typically assume that the class distributions of labeled and unlabeled data are almost identical. Those LTSSL algorithms built upon the assumption can severely suffer when the class distributions of labeled and unlabeled data are mismatched since they utilize biased pseudo-labels from the model. To alleviate this issue, we propose a new simple method that can effectively utilize unlabeled data of unknown class distributions by introducing the adaptive consistency regularizer (ACR). ACR realizes the dynamic refinery of pseudo-labels for various distributions in a unified formula by estimating the true class distribution of unlabeled data. Despite its simplicity, we show that ACR achieves state-of-the-art performance on a variety of standard LTSSL benchmarks, e.g., an averaged 10% absolute increase of test accuracy against existing algorithms when the class distributions of labeled and unlabeled data are mismatched. Even when the class distributions are identical, ACR consistently outperforms many sophisticated LTSSL algorithms. We carry out extensive ablation studies to tease apart the factors that are most important to ACR's success. Source code is available at https://github.com/Gank0078/ACR.
引用
收藏
页码:3469 / 3478
页数:10
相关论文
共 50 条
  • [41] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    Medical Image Analysis, 2022, 81
  • [42] Frequency-Aware Self-Supervised Long-Tailed Learning
    Lin, Ci-Siang
    Chen, Min-Hung
    Wang, Yu-Chiang Frank
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 963 - 972
  • [43] Rebalanced supervised contrastive learning with prototypes for long-tailed visual recognition
    Chang, Xuhui
    Zhai, Junhai
    Qiu, Shaoxin
    Sun, Zhengrong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 252
  • [44] Anchored Supervised Contrastive Learning for Long-Tailed Medical Image Regression
    Li, Zhaoying
    Xing, Zhaohu
    Liu, Hongying
    Zhu, Lei
    Wan, Liang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 3 - 18
  • [45] Self-Supervised Graph Learning for Long-Tailed Cognitive Diagnosis
    Wang, Shanshan
    Zeng, Zhen
    Yang, Xun
    Zhang, Xingyi
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 110 - 118
  • [46] Towards Semi-Supervised Learning of Semantic Spatial Concepts
    Martinez-Gomez, Jesus
    Caputo, Barbara
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 1936 - 1943
  • [47] Combining active learning and Semi-supervised learning using local and Global consistency
    Gu, Yingjie
    Jin, Zhong
    Chiu, Steve C
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8834 : 215 - 222
  • [48] Combining Active Learning and Semi-supervised Learning Using Local and Global Consistency
    Gu, Yingjie
    Jin, Zhong
    Chiu, Steve C.
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT I, 2014, 8834 : 215 - 222
  • [49] Explanation Consistency Training: Facilitating Consistency-Based Semi-Supervised Learning with Interpretability
    Han, Tao
    Tu, Wei-Wei
    Li, Yu-Feng
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7639 - 7646
  • [50] A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification
    Su, Jong-Chyi
    Cheng, Zezhou
    Maji, Subhransu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12961 - 12970