Multi-characterizations of the hydration, microstructure, and mechanical properties of a biochar-limestone calcined clay cement (LC3) mixture

被引:18
|
作者
Wang, Yi-Sheng [1 ]
Wang, Xiao-Yong [1 ,2 ]
机构
[1] Kangwon Natl Univ, Dept Integrated Energy & Infra Syst, Chuncheon Si 24341, South Korea
[2] Kangwon Natl Univ, Dept Architectural Engn, Chuncheon Si 24341, South Korea
基金
新加坡国家研究基金会;
关键词
Biochar; Limestone calcined clay cement; Sustainable; Hydration; Surface resistivity; TEMPERATURE; CONCRETE; BIOMASS; CARBON;
D O I
10.1016/j.jmrt.2023.04.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Biochar is a green material derived from agricultural waste and other biomasses via thermochemical conversion under anaerobic conditions. Improving the utilization of bio-char can reduce agricultural waste and carbon emissions. Limestone calcined clay cement (LC3) is low-carbon hybrid cementitious material with significant potential. The hydration, microstructure, and physical properties of a novel green biochar-added LC3 were investi-gated in this study. The biochar replacement amounts were 1% and 2%. The composition of the material was characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and other methods. The engineering performance of the material was evaluated by testing its compressive strength, ultrasonic pulse velocity, and surface resistivity. The aim of this study was to analyze and explore whether the organic combination of biochar and LC3 can further improve the performance of cement and identify new approaches to reusing waste biomass. The addition of biochar delayed cement hydration, increased the content of the hydration products, and slightly reduced the compressive strength of LC3. Moreover, we observed that the hydration products of cement could be formed owing to the porous characteristics of biochar. Furthermore, the 1% biochar increased the surface resistivity of the material, whereas the 2% biochar decreased it. The combination of biochar and LC3 can further improve the environmental benefits of cement and promote the transition from the cement industry to green production.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:3691 / 3703
页数:13
相关论文
共 50 条
  • [31] Exploring low-grade clay minerals diving into limestone calcined clay cement (LC3): Characterization - Hydration - Performance
    Blouch, Nosheen
    Rashid, Khuram
    Ju, Minkwan
    JOURNAL OF CLEANER PRODUCTION, 2023, 426
  • [32] Mechanical properties and hydration of ultra-high-performance seawater sea-sand concrete (UHPSSC) with limestone calcined clay cement (LC3)
    Wang, Junhui
    Huang, Yue
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 376
  • [33] Physicochemical properties of limestone calcined clay cement (LC3) concrete made using Saudi clays
    Abdulqader, Marwan
    Khalid, Hammad R.
    Ibrahim, Mohammed
    Adekunle, Saheed K.
    Al-Osta, Mohammed A.
    Ahmad, Shamsad
    Sajid, Muhammad
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 2769 - 2783
  • [34] Degradation of limestone calcined clay cement (LC3) mortars under sulfate attack
    Cheng Yu
    Zhen Li
    Jiaping Liu
    Low-carbon Materials and Green Construction, 1 (1):
  • [35] Effect of limestone calcined clay cement (LC3) on the fire safety of concrete structures
    Gupta, Sanchit
    Singh, Dheerendra
    Gupta, Trilok
    Chaudhary, Sandeep
    COMPUTERS AND CONCRETE, 2022, 29 (04): : 263 - 278
  • [36] High temperature impact on calcined clay-limestone cement concrete (LC3)
    Gunjal, S. M.
    Kondraivendhan, B.
    MATERIALS TODAY-PROCEEDINGS, 2022, 61 : 386 - 391
  • [37] Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3)
    Nguyen, Quang Dieu
    Kim, Taehwan
    Castel, Arnaud
    CEMENT AND CONCRETE RESEARCH, 2020, 137
  • [38] Activation of locally excavated spoil for utilization in limestone calcined clay cement (LC3)
    Li, Yongqiang
    Yi, Peng
    Du, Hangyu
    Liu, Wei
    Mi, Tangwei
    Huang, Liming
    Gao, Xue
    Sun, Xiaohui
    Xing, Feng
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 420
  • [39] Concrete Performance of Limestone Calcined Clay Cement (LC3) Compared with Conventional Cements
    Avet, Francois
    Sofia, Lionel
    Scrivener, Karen
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2019, 8 (03): : 275 - 286
  • [40] Incorporation of limestone calcined clay cement (LC3), seawater and sea-sand in ultra-high-performance engineered cementitious composites (UHPECC): Mechanical properties, hydration and microstructure
    Song, Nixia
    Huang, Yue
    Yang, Guotao
    Liu, Xiaoyang
    You, Weijie
    STRUCTURES, 2025, 75