Influence of red mud on the engineering and microstructural properties of sustainable ultra-high performance concrete

被引:33
|
作者
Yan, Pei [1 ,2 ]
Chen, Bing [1 ,2 ]
Haque, M. Aminul [1 ,2 ]
Liu, Tianyu [3 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Civil Engn, Shanghai Key Lab Digital Maintenance Bldg & Infras, Shanghai 200240, Peoples R China
[3] POWERCHINA Shanghai Elctr Power Engn Co Ltd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Red mud; Mechanical properties; Microstructure; Sustainability; MECHANICAL-PROPERTIES; BAUXITE RESIDUE; FIBER; HYDRATION; FRESH; ADSORBENT; RECOVERY; CEMENTS; SILICA; ALKALI;
D O I
10.1016/j.conbuildmat.2023.132404
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper introduces a new application of industrial solid waste red mud to use as a cementitious material in the development of ultra-high performance concrete (UHPC) performances. In addition, utilization of red mud can reduce the environmental impact of red mud landfill. For gaining this aims, UHPC specimens were prepared with different contents of red mud and analyzed the effects of different RM contents on the fluidity, setting time, mechanical properties, durability, drying shrinkage and microstructure of the red mud-based UHPC. The results indicated that fluidity was reduced to 310 mm at 20% red mud level, but it still belongs to enormous fluidity, which is convenient for construction. In addition, it is worth noting that using red mud instead of cement can significantly shorten the setting time, providing a new method for applying the UHPC rapid-repairing process. Red mud-based UHPC mortar prepared with appropriate red mud instead of cement exhibits higher mechanical properties, better durability and reduced drying shrinkage of UHPC during curing. After curing for 28d, the highest compressive strength of UHPC samples containing 20% red mud was 129.5 MPa, the compressive strength of the UHPC samples' sulfate resistance was 136.6 MPa, and the drying shrinkage value was around 414 & mu;m. Moreover, observed information from scanning electron microscopy (SEM) noted that red mud can fill the micro-cracks between particles of cementitious materials, make the structure more compact and form new hydrates. Finally, the two characteristics of low cost and energy consumption further promote the sustainable application of red mud-based UHPC. Therefore, replacing OPC with 20% RM is meaningful to produce a sustainable UHPC mixture and field applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Review of ultra-high performance concrete and its application in bridge engineering
    Xue, Junqing
    Briseghella, Bruno
    Huang, Fuyun
    Nuti, Camillo
    Tabatabai, Habib
    Chen, Baochun
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
  • [42] Flexural Fatigue Properties of Ultra-High Performance Concrete at -10 ℃
    Fang Z.
    Zhu Q.
    Liu S.
    Tan X.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (02): : 473 - 481
  • [43] Effect of slag cement on the properties of ultra-high performance concrete
    Liu, Zhichao
    El-Tawil, Sherif
    Hansen, Will
    Wang, Fazhou
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 190 : 830 - 837
  • [44] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [45] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [46] Experimental Study on Tensile Properties of Ultra-high Performance Concrete
    Fang Z.
    Zhou T.
    Liu L.
    Hu R.
    Huang Z.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (05): : 157 - 165
  • [47] Mechanical Properties of Ultra-high Performance Concrete with Recycled Sand
    Ge X.
    Chu H.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (04): : 810 - 815
  • [48] Mechanical properties of recycled sand ultra-high performance concrete
    Zhang Z.
    Cai Z.
    Li L.
    Yu K.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (11): : 5158 - 5169
  • [49] Advances in the mechanical properties of ultra-high performance concrete (UHPC)
    Chen, JianKang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (05)
  • [50] Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment
    Abdellatief, Mohamed
    Abd Elrahman, Mohamed
    Abadel, Aref A.
    Wasim, Muhammad
    Tahwia, Ahmed
    JOURNAL OF BUILDING ENGINEERING, 2023, 79