Federated Ensemble Model-Based Reinforcement Learning in Edge Computing

被引:13
|
作者
Wang, Jin [1 ]
Hu, Jia [1 ]
Mills, Jed [1 ]
Min, Geyong [1 ]
Xia, Ming [2 ]
Georgalas, Nektarios [3 ]
机构
[1] Univ Exeter, Dept Comp Sci, Exeter EX4 4PY, England
[2] Google, Mountain View, CA 94043 USA
[3] British Telecommun PLC, Appl Res Dept, London EC1A 7AJ, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Computational modeling; Data models; Heuristic algorithms; Training; Edge computing; Reinforcement learning; Analytical models; Deep reinforcement learning; distributed machine learning; edge computing; federated learning;
D O I
10.1109/TPDS.2023.3264480
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated learning (FL) is a privacy-preserving distributed machine learning paradigm that enables collaborative training among geographically distributed and heterogeneous devices without gathering their data. Extending FL beyond the supervised learning models, federated reinforcement learning (FRL) was proposed to handle sequential decision-making problems in edge computing systems. However, the existing FRL algorithms directly combine model-free RL with FL, thus often leading to high sample complexity and lacking theoretical guarantees. To address the challenges, we propose a novel FRL algorithm that effectively incorporates model-based RL and ensemble knowledge distillation into FL for the first time. Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models for clients, and then train the policy by solely using the ensemble model without interacting with the environment. Furthermore, we theoretically prove that the monotonic improvement of the proposed algorithm is guaranteed. The extensive experimental results demonstrate that our algorithm obtains much higher sample efficiency compared to classic model-free FRL algorithms in the challenging continuous control benchmark environments under edge computing settings. The results also highlight the significant impact of heterogeneous client data and local model update steps on the performance of FRL, validating the insights obtained from our theoretical analysis.
引用
收藏
页码:1848 / 1859
页数:12
相关论文
共 50 条
  • [31] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [32] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [33] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [34] Federated learning based method for intelligent computing with privacy preserving in edge computing
    Liu Q.
    Xu X.
    Zhang X.
    Dou W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (09): : 2604 - 2610
  • [35] Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on Asynchronous Federated and Deep Reinforcement Learning
    Wu, Qiong
    Zhao, Yu
    Fan, Qiang
    Fan, Pingyi
    Wang, Jiangzhou
    Zhang, Cui
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (01) : 66 - 81
  • [36] A Blockchain-Empowered Multiaggregator Federated Learning Architecture in Edge Computing With Deep Reinforcement Learning Optimization
    Li, Xiao
    Wu, Weili
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [37] Enhancing Federated Learning with Intelligent Model Migration in Heterogeneous Edge Computing
    Liu, Jianchun
    Xu, Yang
    Xu, Hongli
    Liao, Yunming
    Wang, Zhiyuan
    Huang, He
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1586 - 1597
  • [38] A Distributed Hierarchical Deep Computation Model for Federated Learning in Edge Computing
    Zheng, Haifeng
    Gao, Min
    Chen, Zhizhang
    Feng, Xinxin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 7946 - 7956
  • [39] Federated Learning in Vehicular Edge Computing: A Selective Model Aggregation Approach
    Ye, Dongdong
    Yu, Rong
    Pan, Miao
    Han, Zhu
    IEEE ACCESS, 2020, 8 (08): : 23920 - 23935
  • [40] Edge computing-based ensemble learning model for health care decision systems
    Vincent, Asir Chandra Shinoo Robert
    Sengan, Sudhakar
    SCIENTIFIC REPORTS, 2024, 14 (01):