The colored Jones polynomial of the figure-eight knot and a quantum modularity

被引:0
|
作者
Murakami, Hitoshi [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aramaki aza Aoba 6-3-09,Aoba Ku, Sendai 9808579, Japan
关键词
Colored Jones polynomial; volume conjecture; figure-eight knot; Chern-Simons invariant; Reidemeister torsion; quantum modularity; VOLUME CONJECTURE; INVARIANTS;
D O I
10.4153/S0008414X23000172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of the N-dimensional colored Jones polynomial of the figure-eight knot evaluated at exp((u + 2ppv-1)/N), where u is a small real number and p is a positive integer. We show that it is asymptotically equivalent to the product of the p- dimensional colored Jones polynomial evaluated at exp(4Np(2)/(u + 2ppv-1)) and a term that grows exponentially with growth rate determined by the Chern-Simons invariant. This indicates a quantum modularity of the colored Jones polynomial.
引用
收藏
页码:519 / 554
页数:36
相关论文
共 50 条
  • [21] Computing immersed normal surfaces in the figure-eight knot complement
    Rannard, R
    EXPERIMENTAL MATHEMATICS, 1999, 8 (01) : 73 - 84
  • [22] Constructing thin subgroups commensurable with the figure-eight knot group
    Ballas, Samuel
    Long, Darren D.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05): : 3011 - 3024
  • [23] Asymptotic behavior of the colored Jones polynomials and Turaev-Viro invariants of the figure eight knot
    Wong, Ka Ho
    Au, Thomas Kwok-Keung
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (01): : 1 - 53
  • [24] Finite volume properly convex deformations of the figure-eight knot
    Samuel A. Ballas
    Geometriae Dedicata, 2015, 178 : 49 - 73
  • [25] Branched Spherical CR Structures on the Complement of the Figure-Eight Knot
    Falbel, Elisha
    Wang, Jieyan
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (03) : 635 - 667
  • [26] The fundamental group of the double of the figure-eight knot exterior is GFERF
    Long, DD
    Reid, AW
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 391 - 396
  • [27] The regular projective solution space of the figure-eight knot complement
    Matsumoto, S
    Rannard, R
    EXPERIMENTAL MATHEMATICS, 2000, 9 (02) : 221 - 234
  • [28] Difference equation of the colored Jones polynomial for torus knot
    Hikami, K
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (09) : 959 - 965
  • [29] The (2,1)-cable of the figure-eight knot is not smoothly slice
    Dai, Irving
    Kang, Sungkyung
    Mallick, Abhishek
    Park, Junghwan
    Stoffregen, Matthew
    INVENTIONES MATHEMATICAE, 2024, 238 (02) : 371 - 390
  • [30] A grid-enabled algorithm yields figure-eight molecular knot
    Psomopoulos, Fotis E.
    Mitkas, Pericles A.
    Krinas, Christos S.
    Demetropoulos, Ioannis N.
    MOLECULAR SIMULATION, 2009, 35 (09) : 725 - 736