Modelling the daily probability of lightning-caused ignition in the Iberian Peninsula

被引:11
|
作者
Rodrigues, Marcos [1 ,2 ]
Jimenez-Ruano, Adrian [1 ,2 ]
Gelabert, Pere Joan [3 ]
de Dios, Victor Resco [4 ,5 ,6 ]
Torres, Luis [7 ]
Ribalaygua, Jaime [7 ]
Vega-Garcia, Cristina [3 ]
机构
[1] Univ Zaragoza, Dept Geog & Land Management, Pedro Cerbuna 12, Zaragoza 5009, Spain
[2] Univ Zaragoza, Univ Inst Res Environm Sci Aragon IUCA, GEOFOREST Grp, Pedro Cerbuna 12, Zaragoza 5009, Spain
[3] Univ Lleida, Dept Agr & Forest Engn, Alcalde Rovira Roure 191, Lleida 25198, Spain
[4] Univ Lleida, Dept Crop & Forest Sci, Alcalde Rovira Roure 191, Lleida 25198, Spain
[5] CERCA Ctr, Joint Res Unit CTFC, AGROTECNIO, Alcalde Rovira Roure 191, Lleida 25198, Spain
[6] Southwest Univ Sci & Technol, Sch Life Sci & Engn, 59 Qinlong Rd, Mianyang 621010, Peoples R China
[7] MeteoGRID SL, Calle Almansa 88, Madrid 28040, Spain
关键词
fire danger; forecast; fuel moisture; Iberian Peninsula; ignition probability; lightning strike; machine learning; wildfires; FOREST-FIRE OCCURRENCE; CLIMATE-CHANGE; WILDFIRES; DISTRIBUTIONS; MOISTURE; DRIVERS; TRENDS;
D O I
10.1071/WF22123
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Background. Lightning is the most common origin of natural fires, being strongly linked to specific synoptic conditions associated with atmospheric instability, such as dry thunderstorms; dry fuels are required for ignition to take place and for subsequent propagation.Aims. The aim was to predict the daily probability of ignition by exploiting a large dataset of lightning and fire data to anticipate ignition over the entire Iberian Peninsula.Methods. We trained and tested a machine learning model using lightning strikes (> 17 million) in the period 2009-2015. For each lightning strike, we extracted information relating to fuel condition, structural features of vegetation, topography, and the specific characteristics of the strikes (polarity, intensity and flash density).Key results. Naturally triggered ignitions are typically initiated at higher elevations (above 1000 m above sea level) under conditions of low dead fuel moisture (< 10-13%) and moderate live moisture content (Drought Code > 300). Negative-polarity lightning strikes (-10 kA) appear to trigger fires more frequently.Conclusions and implications. Our approach was able to provide ignition forecasts at multiple temporal and spatial scales, thus enhancing forest fire risk assessment systems.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 50 条
  • [31] Numerical simulation of lightning-caused inrush currents in power distribution transformers
    Song, Z
    Raghuveer, MR
    2005 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, 2005, : 289 - 292
  • [32] Study on Mechanism of Lightning-Caused Breakage and Protection Measures of Bare Conductors
    Cheng, Zizhuan
    Chen, Yafang
    Chen, Changfu
    Liu, Hao
    Han, Yongxia
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 3710 - 3715
  • [33] Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests
    Nash, CH
    Johnson, EA
    CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1996, 26 (10): : 1859 - 1874
  • [34] Patterns in Lightning-caused Fires at Great Smoky Mountains National Park
    Dana Cohen
    Bob Dellinger
    Rob Klein
    Beth Buchanan
    Fire Ecology, 2007, 3 (2) : 68 - 82
  • [35] Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning
    Schumacher, Vanucia
    Setzer, Alberto
    Saba, Marcelo M. F.
    Naccarato, Kleber P.
    Mattos, Enrique
    Justino, Flavio
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 312
  • [36] Pantropical geography of lightning-caused disturbance and its implications for tropical forests
    Gora, Evan M.
    Burchfield, Jeffrey C.
    Muller-Landau, Helene C.
    Bitzer, Phillip M.
    Yanoviak, Stephen P.
    GLOBAL CHANGE BIOLOGY, 2020, 26 (09) : 5017 - 5026
  • [37] Countermeasures for controlling lightning-caused overvoltage on indoor wiring with communication line
    Nakada, K
    Sugimoto, H
    Shimada, S
    Asaoka, Y
    Asakawa, A
    ELECTRICAL ENGINEERING IN JAPAN, 2004, 146 (01) : 37 - 45
  • [38] Using model-based geostatistics to predict lightning-caused wildfires
    Ordonez, C.
    Saavedra, A.
    Rodriguez-Perez, J. R.
    Castedo-Dorado, F.
    Covian, E.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 29 (01) : 44 - 50
  • [39] LIGHTNING-CAUSED DISTRIBUTION TRANSFORMER OUTAGES ON A FLORIDA DISTRIBUTION-SYSTEM
    PARRISH, DE
    MEMBER, PE
    IEEE TRANSACTIONS ON POWER DELIVERY, 1991, 6 (02) : 880 - 887
  • [40] Controls on interannual variability in lightning-caused fire activity in the western US
    Abatzoglou, John T.
    Kolden, Crystal A.
    Balch, Jennifer K.
    Bradley, Bethany A.
    ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (04):