Effects of transition metals for silicon-based lithium-ion battery anodes: A comparative study in electrochemical applications

被引:12
|
作者
Nuhu, Bage Alhamdu [1 ,2 ]
Bamisile, Olusola [1 ]
Adun, Humphrey [3 ]
Abu, Usman O. [4 ]
Cai, Dongsheng [1 ]
机构
[1] Chengdu Univ Technol, Sichuan Ind Internet Intelligent Monitoring & Appl, Chengdu, Peoples R China
[2] Southwest Petr Univ, Sch Chem & Chem Engn, 8,Xindu Ave, Chengdu 610500, Peoples R China
[3] Cyprus Int Univ, Energy Syst Engn Dept, KKTC, Mersin, Turkiye
[4] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA
关键词
Electrochemical performance; Electrodes; Transition metals; Composites; Stability; Anodes; PERFORMANCE; SI; COMPOSITE; CAPACITY;
D O I
10.1016/j.jallcom.2022.167737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The strength, conductivity, elasticity, inactivity against lithium, and tunability properties of transition metals (TMs) are the major reasons these metals are used to synthesize silicon-based lithium-ion battery (LIBs) composite anodes. This is because TMs significantly influence and improve the overall electro-chemical performance of LIB electrodes by mitigating the undesired expansion of silicon. The effects of different elemental transition metals copper (Cu), titanium (Ti), nickel (Ni), and iron (Fe) on the electro-chemical performance of silicon-based composites were compared, and the phases formed during milling were correlated to the behavior of the composites in which they are present. The excellent performance of these electrodes was attributed to the reaction mechanism of transition metals after the first conversion reaction during lithiation and remained inactive during the ensuing cycles. It was found that the strength and ductile nature of nickel accounts for relieving mechanical stress induced on Silicon during the insertion and extraction of lithium ions. All copper-containing composites showed high stability in cycling but low capacity, which is attributed to the high amounts of copper, contained in these composites and the reaction of copper with silicon during milling. The presence of titanium improved the electrical conductivity and mechanical strength of the electrodes. Iron-containing composites were observed to highly withstand deformation due to the strength of the matrix. Moreover, the addition of 10 wt. percentage carbon improved the cycle performance and rate capability of Cu-Fe-Si-C, Cu-Ni-Si-C, Ni-Fe-Si-C, and Ni-Ti-Si-C. These composites showed stable cycling performance of 654.42 mAh g-1, 686.16 mAh g-1, 657.56 mAh g-1, and 643.29 mAh g-1 respectively after 100 cycles capacity at 1 C.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Review of silicon-based alloys for lithium-ion battery anodes
    Zhi-yuan Feng
    Wen-jie Peng
    Zhi-xing Wang
    Hua-jun Guo
    Xin-hai Li
    Guo-chun Yan
    Jie-xi Wang
    International Journal of Minerals, Metallurgy and Materials, 2021, 28 : 1549 - 1564
  • [2] Review of silicon-based alloys for lithium-ion battery anodes
    Feng, Zhi-yuan
    Peng, Wen-jie
    Wang, Zhi-xing
    Guo, Hua-jun
    Li, Xin-hai
    Yan, Guo-chun
    Wang, Jie-xi
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1549 - 1564
  • [3] Review of silicon-based alloys for lithium-ion battery anodes
    Zhi-yuan Feng
    Wen-jie Peng
    Zhi-xing Wang
    Hua-jun Guo
    Xin-hai Li
    Guo-chun Yan
    Jie-xi Wang
    International Journal of Minerals Metallurgy and Materials, 2021, 28 (10) : 1549 - 1564
  • [4] Advances in Coating Materials for Silicon-Based Lithium-Ion Battery Anodes
    Nam, Hyesu
    Song, Wonyoung
    Chae, Oh B.
    ENERGIES, 2024, 17 (19)
  • [5] Hierarchical nanostructured silicon-based anodes for lithium-ion battery: Processing and performance
    Jana, M.
    Ning, Tianxiang
    Singh, Raj N.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 232 : 61 - 67
  • [6] Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications
    Feng, Kun
    Li, Matthew
    Liu, Wenwen
    Kashkooli, Ali Ghorbani
    Xiao, Xingcheng
    Cai, Mei
    Chen, Zhongwei
    SMALL, 2018, 14 (08)
  • [7] Exploring the practical applications of silicon anodes: a review of silicon-based composites for lithium-ion batteries
    Hong Dong
    Jie Wang
    Hao Ding
    Feifei Zong
    Peng Wang
    Ru Song
    Ningshuang Zhang
    Xiaoling Cui
    Xuchun Cui
    Shiyou Li
    Ionics, 2022, 28 : 3057 - 3077
  • [8] Exploring the practical applications of silicon anodes: a review of silicon-based composites for lithium-ion batteries
    Dong, Hong
    Wang, Jie
    Ding, Hao
    Zong, Feifei
    Wang, Peng
    Song, Ru
    Zhang, Ningshuang
    Cui, Xiaoling
    Cui, Xuchun
    Li, Shiyou
    IONICS, 2022, 28 (07) : 3057 - 3077
  • [9] Progress in Binders for Silicon-Based Lithium-Ion Batteries Anodes
    Xu Z.
    Zhang Z.
    Sun J.
    Zhao W.
    Wang Q.
    Cao L.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (05): : 161 - 170
  • [10] Effect of temperature on silicon-based anodes for lithium-ion batteries
    Piernas-Munoz, M. J.
    Trask, S. E.
    Dunlop, A. R.
    Lee, E.
    Bloom, I
    JOURNAL OF POWER SOURCES, 2019, 441