Advances in Coating Materials for Silicon-Based Lithium-Ion Battery Anodes

被引:1
|
作者
Nam, Hyesu [1 ]
Song, Wonyoung [1 ]
Chae, Oh B. [1 ]
机构
[1] Gachon Univ, Sch Chem Biol & Battery Engn, Seongnam Si 13120, South Korea
关键词
silicon anodes; coating materials; surface coating; artificial SEI; lithium-ion batteries; SOLID-ELECTROLYTE INTERPHASE; CARBON-COATED SILICON; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LITHIATED SILICON; TIO2; ANODE; SI ANODES; COO ANODE; LAYER; STABILITY;
D O I
10.3390/en17194970
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon anodes, which exhibit high theoretical capacity and very low operating potential, are promising as anode candidates that can satisfy the conditions currently required for secondary batteries. However, the low conductivity of silicon and the alloying/dealloying phenomena that occur during charging and discharging cause sizeable volume expansion with side reactions; moreover, various electrochemical issues result in inferior cycling performance. Therefore, many strategies have been proposed to mitigate these problems, with the most commonly used method being the use of nanosized silicon. However, this approach leads to another electrochemical limitation-that is, an increase in side reactions due to the large surface area. These problems can effectively be resolved using coating strategies. Therefore, to address the issues faced by silicon anodes in lithium-ion batteries, this review comprehensively discusses various coating materials and the related synthesis methods. In this review, the electrochemical properties of silicon-based anodes are outlined according to the application of various coating materials such as carbon, inorganic (including metal-, metal oxide-, and nitride-based) materials, and polymer. Additionally, double shells introduced using two materials for double coatings exhibit more complementary electrochemical properties than those of their single-layer counterparts. The strategy involving the application of a coating is expected to have a positive effect on the commercialization of silicon-based anodes.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Review of silicon-based alloys for lithium-ion battery anodes
    Zhi-yuan Feng
    Wen-jie Peng
    Zhi-xing Wang
    Hua-jun Guo
    Xin-hai Li
    Guo-chun Yan
    Jie-xi Wang
    International Journal of Minerals, Metallurgy and Materials, 2021, 28 : 1549 - 1564
  • [2] Review of silicon-based alloys for lithium-ion battery anodes
    Feng, Zhi-yuan
    Peng, Wen-jie
    Wang, Zhi-xing
    Guo, Hua-jun
    Li, Xin-hai
    Yan, Guo-chun
    Wang, Jie-xi
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1549 - 1564
  • [3] Review of silicon-based alloys for lithium-ion battery anodes
    Zhi-yuan Feng
    Wen-jie Peng
    Zhi-xing Wang
    Hua-jun Guo
    Xin-hai Li
    Guo-chun Yan
    Jie-xi Wang
    International Journal of Minerals Metallurgy and Materials, 2021, 28 (10) : 1549 - 1564
  • [4] Review on Silicon-Based Anode Materials for Lithium-Ion Battery
    Wu Baozhen
    Wu Fuzhong
    Jin Huixin
    Lu Jiangteng
    Chen Jingbo
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (08) : 2600 - 2606
  • [5] Hierarchical nanostructured silicon-based anodes for lithium-ion battery: Processing and performance
    Jana, M.
    Ning, Tianxiang
    Singh, Raj N.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 232 : 61 - 67
  • [6] Porous MCM-41 Silica Materials as Scaffolds for Silicon-based Lithium-ion Battery Anodes
    Karl, Michael
    Kalyakina, Alena
    Draeger, Christoph
    Haufe, Stefan
    Pokrant, Simone
    CHEMELECTROCHEM, 2024, 11 (07)
  • [7] Well-constructed silicon-based materials as high-performance lithium-ion battery anodes
    Liu, Lehao
    Lyu, Jing
    Li, Tiehu
    Zhao, Tingkai
    NANOSCALE, 2016, 8 (02) : 701 - 722
  • [8] Progress in modification of micron silicon-based anode materials for lithium-ion battery
    Chen, Xinyuan
    Liu, Qi
    Hou, Lijuan
    Yang, Qiang
    Zhao, Xiaohan
    Mu, Daobin
    Li, Li
    Chen, Renjie
    Wu, Feng
    JOURNAL OF ENERGY STORAGE, 2024, 93
  • [9] Progress in Binders for Silicon-Based Lithium-Ion Batteries Anodes
    Xu Z.
    Zhang Z.
    Sun J.
    Zhao W.
    Wang Q.
    Cao L.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (05): : 161 - 170
  • [10] Effect of temperature on silicon-based anodes for lithium-ion batteries
    Piernas-Munoz, M. J.
    Trask, S. E.
    Dunlop, A. R.
    Lee, E.
    Bloom, I
    JOURNAL OF POWER SOURCES, 2019, 441