A multi-parametric machine learning approach using authentication trees for the healthcare industry

被引:4
|
作者
Abunadi, Ibrahim [1 ]
Rehman, Amjad [1 ]
Haseeb, Khalid [1 ,2 ]
Alam, Teg [3 ,4 ]
Jeon, Gwanggil [1 ,5 ,6 ,7 ]
机构
[1] CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt Lab AIDA, Riyadh, Saudi Arabia
[2] Islamia Coll Peshawar, Dept Comp Sci, Peshawar, Pakistan
[3] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Dept Ind Engn, Al Kharj, Saudi Arabia
[4] Azad Inst Engn & Technol, Azad puram,Chandrawal via Bangla Bazar & Bijnour,N, Lucknow, India
[5] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon, South Korea
[6] CCIS Prince Sultan Univ, Incheon, South Korea
[7] Incheon Natl Univ, Incheon, South Korea
关键词
data distribution; health risks; healthcare industry; internet of things; machine learning; multi-parametric analysis; security; INTERNET; MODEL;
D O I
10.1111/exsy.13202
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Internet of Health Things (IoHT) has grown in importance for developing medical applications with the support of wireless communication systems. IoHT is integrated with many sensors to capture the patients' records and transmits them to hospital centres for analysis and reporting. Controlling and managing health records has been addressed in several ways, however, it is noted that two key research problems for vital communication systems are reliability and reducing data loss. To enhance the sustainability of health applications and effectively use the network infrastructure when transferring sensitive data, this research provides a machine learning approach. Moreover, data collected from the IoHTs are protected and can be securely received for physical process in hospitals using authentication trees. Firstly, the undirected graphs are explored based on the multi-parametric machine learning approach to minimize the computation overheads and traffic congestion. Secondly, it evaluates the nodes' level behaviour over the heterogeneous traffic load with efficient identification of redundant links. Finally, in-depth analysis and simulation results have shown that the proposed protocol is more effective than existing approaches for data accuracy and security analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep learning tumor segmentation for target delineation in glioblastoma using multi-parametric MRI
    Hannisdal, M.
    Goplen, D.
    Alam, S.
    Haasz, J.
    Oltedal, L.
    Rahman, M. A.
    Rygh, C. B.
    Lie, S. A.
    Lundervold, A.
    Chekenya, M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S251 - S252
  • [32] Aiding Dictionary Learning Through Multi-Parametric Sparse Representation
    Stoican, Florin
    Irofti, Paul
    ALGORITHMS, 2019, 12 (07)
  • [33] A novel approach for solving multi-parametric problems with nonlinear constraints
    Addis Belete Zewde
    Semu Mitiku Kassa
    Journal of Global Optimization, 2023, 85 : 283 - 313
  • [34] A multi-parametric programming approach for constrained dynamic programming problems
    Faisca, Nuno P.
    Kouramas, Konstantinos I.
    Saraiva, Pedro M.
    Rustem, Berc
    Pistikopoulos, Efstratios N.
    OPTIMIZATION LETTERS, 2008, 2 (02) : 267 - 280
  • [35] Multi-Parametric Delineation Approach for Homogeneous Sectioning of Asphalt Pavements
    Peraka, Naga Siva Pavani
    Biligiri, Krishna Prapoorna
    Kalidindi, Satyanarayana N.
    INFRASTRUCTURES, 2023, 8 (10)
  • [36] A novel approach for solving multi-parametric problems with nonlinear constraints
    Zewde, Addis Belete
    Kassa, Semu Mitiku
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (02) : 283 - 313
  • [37] PREDICTION OF GLIOBLASTOMA CELLULAR INFILTRATION AND RECURRENCE USING MACHINE LEARNING AND MULTI-PARAMETRIC MRI ANALYSIS: RESULTS FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM
    Akbari, Hamed
    Mohan, Suyash
    Garcia, Jose A.
    Kazerooni, Anahita Fathi
    Sako, Chiharu
    Bakas, Spyridon
    Shukla, Gaurav
    Bagley, Stephen J.
    Ahn, Sung Soo
    Ak, Murat
    Alexander, Gregory S.
    Ali, Ayesha S.
    Baid, Ujjwal
    Bavde, Chaitra
    Brem, Steven
    Capellades, Jaume
    Chang, Jong Hee
    Choi, Yoon Seong
    Dicker, Adam P.
    Fathallah-Shaykh, Hassan
    Flanders, Adam E.
    Griffith, Brent D.
    LaMontagne, Pamela
    Lee, Matthew
    Lee, Seung-Koo
    Liem, Spencer
    Lombardo, Joseph
    Mahajan, Abhishek
    Milchenko, Mikhail
    Nazeri, Arash
    Puig, Josep
    Sloan, Andrew
    Taylor, William
    Vadmal, Vachan
    Waite, Kristin
    Nasrallah, MacLean
    Bilello, Michel
    Lustig, Robert A.
    Balana, Carmen
    Booth, Thomas C.
    Cepeda, Santiago
    Poisson, Laila
    Colen, Rivka R.
    Marcus, Daniel S.
    Palmer, Joshua
    Jain, Rajan
    Shi, Wenyin
    O'Rourke, Donald M.
    Barnholtz-Sloan, Jill
    Davatzikos, Christos
    NEURO-ONCOLOGY, 2021, 23 : 132 - 133
  • [38] A Novel Approach to Multi-Parametric Dynamic Chemical Shift Imaging
    Taylor, B. A.
    Hwang, K. P.
    Hazle, J. D.
    Stafford, R. J.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [39] Towards a Multi-parametric Visualisation Approach for Business Process Analytics
    Bachhofner, Stefan
    Kis, Isabella
    Di Ciccio, Claudio
    Mendling, Jan
    ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS (CAISE 2017), 2017, 286 : 85 - 91
  • [40] A multi-parametric programming approach for constrained dynamic programming problems
    Nuno P. Faísca
    Konstantinos I. Kouramas
    Pedro M. Saraiva
    Berç Rustem
    Efstratios N. Pistikopoulos
    Optimization Letters, 2008, 2 : 267 - 280