A constrained maximum likelihood estimation for skew normal mixtures

被引:0
|
作者
Jin, Libin [1 ]
Chiu, Sung Nok [2 ]
Zhao, Jianhua [3 ]
Zhu, Lixing [2 ,3 ]
机构
[1] Shanghai Lixin Univ Accounting & Finance, Stat & Math Coll Interdisciplinary Res Inst Data, Shanghai, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[3] Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming, Yunnan, Peoples R China
基金
美国国家科学基金会;
关键词
Skew normal mixtures; Likelihood degeneracy; Boundary estimator; Constraint maximum likelihood estimator; Strong consistency; FINITE MIXTURE; EM-ALGORITHM; CONSISTENCY; UNIVARIATE; INFERENCE; MODELS;
D O I
10.1007/s00184-022-00873-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a finite mixture of skew normal distributions, the maximum likelihood estimator is not well-defined because of the unboundedness of the likelihood function when scale parameters go to zero and the divergency of the skewness parameter estimates. To overcome these two problems simultaneously, we propose constrained maximum likelihood estimators under constraints on both the scale parameters and the skewness parameters. The proposed estimators are consistent and asymptotically efficient under relaxed constraints on the scale and skewness parameters. Numerical simulations show that in finite sample cases the proposed estimators outperform the ordinary maximum likelihood estimators. Two real datasets are used to illustrate the success of the proposed approach.
引用
收藏
页码:391 / 419
页数:29
相关论文
共 50 条