Data-Driven Equation Discovery of a Cloud Cover Parameterization

被引:7
|
作者
Grundner, Arthur [1 ,2 ]
Beucler, Tom [3 ]
Gentine, Pierre [2 ]
Eyring, Veronika [1 ,4 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt eV DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[2] Columbia Univ, Ctr Learning Earth Artificial Intelligence & Phys, New York, NY 10027 USA
[3] Univ Lausanne, Inst Earth Surface Dynam, Lausanne, Switzerland
[4] Univ Bremen, Inst Environm Phys IUP, Bremen, Germany
基金
欧洲研究理事会;
关键词
symbolic regression; cloud fraction; cloud cover; parameterization; Pareto frontier; RELATIVE-HUMIDITY; ICON-A; STRATOCUMULUS; SIMULATIONS; CLIMATE; MODEL;
D O I
10.1029/2023MS003763
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A promising method for improving the representation of clouds in climate models, and hence climate projections, is to develop machine learning-based parameterizations using output from global storm-resolving models. While neural networks (NNs) can achieve state-of-the-art performance within their training distribution, they can make unreliable predictions outside of it. Additionally, they often require post-hoc tools for interpretation. To avoid these limitations, we combine symbolic regression, sequential feature selection, and physical constraints in a hierarchical modeling framework. This framework allows us to discover new equations diagnosing cloud cover from coarse-grained variables of global storm-resolving model simulations. These analytical equations are interpretable by construction and easily transferable to other grids or climate models. Our best equation balances performance and complexity, achieving a performance comparable to that of NNs (R-2 = 0.94) while remaining simple (with only 11 trainable parameters). It reproduces cloud cover distributions more accurately than the Xu-Randall scheme across all cloud regimes (Hellinger distances < 0.09), and matches NNs in condensate-rich regimes. When applied and fine-tuned to the ERA5 reanalysis, the equation exhibits superior transferability to new data compared to all other optimal cloud cover schemes. Our findings demonstrate the effectiveness of symbolic regression in discovering interpretable, physically-consistent, and nonlinear equations to parameterize cloud cover.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] IUGS' Initiative on Data-Driven Geoscience Discovery
    Cheng, Qiuming
    JOURNAL OF EARTH SCIENCE, 2021, 32 (02) : 468 - 470
  • [42] Cloud computing for data-driven science and engineering
    Simmhan, Yogesh
    Ramakrishnan, Lavanya
    Antoniu, Gabriel
    Goble, Carole
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (04): : 947 - 949
  • [43] A Review of Data-Driven Discovery for Dynamic Systems
    North, Joshua S.
    Wikle, Christopher K.
    Schliep, Erin M.
    INTERNATIONAL STATISTICAL REVIEW, 2023, 91 (03) : 464 - 492
  • [44] Data-Driven Discovery of Immune Contexture Biomarkers
    Schwen, Lars Ole
    Andersson, Emilia
    Korski, Konstanty
    Weiss, Nick
    Haase, Sabrina
    Gaire, Fabien
    Hahn, Horst K.
    Homeyer, Andre
    Grimm, Oliver
    FRONTIERS IN ONCOLOGY, 2018, 8
  • [45] Data-driven discovery of partial differential equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    SCIENCE ADVANCES, 2017, 3 (04):
  • [46] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [47] Data-Driven Domain Discovery for Structured Datasets
    Ota, Masayo
    Mueller, Heiko
    Freire, Juliana
    Srivastava, Divesh
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (07): : 953 - 965
  • [48] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    MRS Bulletin, 2019, 44 : 559 - 564
  • [49] Data-driven discovery of PDEs in complex datasets
    Berg, Jens
    Nystrom, Kaj
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 : 239 - 252
  • [50] Opportunities and Challenges of Data-Driven Virus Discovery
    Lauber, Chris
    Seitz, Stefan
    BIOMOLECULES, 2022, 12 (08)