Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

被引:27
|
作者
Cao, Xuheng [1 ]
Lian, Yusheng [1 ]
Wang, Kaixuan [1 ]
Ma, Chao [1 ]
Xu, Xianqing [1 ]
机构
[1] Beijing Inst Graph Commun, Sch Printing & Packaging Engn, Beijing 102600, Peoples R China
基金
中国国家自然科学基金;
关键词
Degradation; Transformers; Spatial resolution; Imaging; Tensors; Spectral analysis; Hyperspectral imaging; Blind fusion; degradation representation; feature fusion; superresolution; unsupervised transformer; SPARSE; SUPERRESOLUTION; FACTORIZATION;
D O I
10.1109/TGRS.2024.3359232
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fusing a low spatial resolution hyperspectral image (LR-HIS) with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This article proposes an unsupervised hybrid network of transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multilevel spatio-spectral correlation between the desired HR-HSI and the observed images, we design a multilevel cross-feature attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without preknown degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [31] Multiscale Fusion Transformer Network for Hyperspectral Image Classification
    Yuquan Gan
    Hao Zhang
    Chen Yi
    Journal of Beijing Institute of Technology, 2024, (03) : 255 - 270
  • [32] SURE-ERGAS: UNSUPERVISED DEEP LEARNING MULTISPECTRAL AND HYPERSPECTRAL IMAGE FUSION
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5623 - 5626
  • [33] Multiscale Fusion Transformer Network for Hyperspectral Image Classification
    Gan, Yuquan
    Zhang, Hao
    Yi, Chen
    Journal of Beijing Institute of Technology (English Edition), 2024, 33 (03): : 255 - 270
  • [34] Pyramid Fully Convolutional Network for Hyperspectral and Multispectral Image Fusion
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1549 - 1558
  • [35] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION BASED ON DEEP ATTENTION NETWORK
    Yang, Qing
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [36] HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion
    Li, Kun
    Zhang, Wei
    Yu, Dian
    Tian, Xin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 30 - 44
  • [37] Interactive transformer and CNN network for fusion classification of hyperspectral and LiDAR data
    Wang, Leiquan
    Liu, Wenwen
    Lyu, Dong
    Zhang, Peiying
    Guo, Fangming
    Hu, Yabin
    Xu, Mingming
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024,
  • [38] FCSwinU: Fourier Convolutions and Swin Transformer UNet for Hyperspectral and Multispectral Image Fusion
    Li, Rumei
    Zhang, Liyan
    Wang, Zun
    Li, Xiaojuan
    SENSORS, 2024, 24 (21)
  • [39] PSRT: Pyramid Shuffle-and-Reshuffle Transformer for Multispectral and Hyperspectral Image Fusion
    Deng, Shang-Qi
    Deng, Liang-Jian
    Wu, Xiao
    Ran, Ran
    Hong, Danfeng
    Vivone, Gemine
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] PSRT: Pyramid Shuffle-and-Reshuffle Transformer for Multispectral and Hyperspectral Image Fusion
    Deng, Shang-Qi
    Deng, Liang-Jian
    Wu, Xiao
    Ran, Ran
    Hong, Danfeng
    Vivone, Gemine
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61