Contrastive-based YOLOv7 for personal protective equipment detection

被引:4
|
作者
Samma, Hussein [1 ]
Al-Azani, Sadam [1 ]
Luqman, Hamzah [1 ,2 ]
Alfarraj, Motaz [1 ,2 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, SDAIA KFUPM Joint Res Ctr Artificial Intelligence, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Informat & Comp Sci Dept, Dhahran, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Elect Engn Dept, Dhahran, Saudi Arabia
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 05期
关键词
Contrastive learning; YOLO; Object detection; CHV dataset; PPE;
D O I
10.1007/s00521-023-09212-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
You only look once (YOLO) is a state-of-the-art object detection model which has a novel architecture that balances model complexity with the inference time. Among YOLO versions, YOLOv7 has a lightweight backbone network called E-ELAN that allows it to learn more efficiently without affecting the gradient path. However, YOLOv7 models face classification difficulties when dealing with classes that have a similar shape and texture like personal protective equipment (PPE). In other words, the Glass versus NoGlass PPE objects almost appear similar when the image is captured at a distance. To mitigate this issue and further improve the classification performance of YOLOv7, a modified version called the contrastive-based model is introduced in this work. The basic concept is that a contrast loss branch function has been added, which assists the YOLOv7 model in differentiating and pushing instances from different classes in the embedding space. To validate the effectiveness of the implemented contrastive-based YOLO, it has been evaluated on two different datasets which are CHV and our own indoor collected dataset named JRCAI. The dataset contains 12 different types of PPE classes. Notably, we have annotated both datasets for the studied 12 PPE objects. The experimental results showed that the proposed model outperforms the standard YOLOv7 model by 2% in mAP@0.5 measure. Furthermore, the proposed model outperformed other YOLO variants as well as cutting-edge object detection models such as YOLOv8, Faster-RCNN, and DAB-DETR.
引用
收藏
页码:2445 / 2457
页数:13
相关论文
共 50 条
  • [21] A Combined Detection Algorithm for Personal Protective Equipment Based on Lightweight YOLOv4 Model
    Ma, Li
    Li, Xinxin
    Dai, Xinguan
    Guan, Zhibin
    Lu, Yuanmeng
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [22] YOLOv7-PSAFP: Crop pest and disease detection based on improved YOLOv7
    Du, Lujia
    Zhu, Junlong
    Liu, Muhua
    Wang, Lin
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [23] Mask wearing detection algorithm based on improved YOLOv7
    Luo, Fang
    Zhang, Yin
    Xu, Lunhui
    Zhang, Zhiliang
    Li, Ming
    Zhang, Weixiong
    MEASUREMENT & CONTROL, 2024, 57 (06): : 751 - 762
  • [24] A Defect Detection Method Based on YOLOv7 for Automated Remanufacturing
    Satsangee, Guru Ratan
    Al-Musaibeli, Hamdan
    Ahmad, Rafiq
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [25] Rail Surface Defect Detection Based on Improved YOLOv7
    Chen, Renxiang
    Pan, Sheng
    Yang, Lixia
    Gao, Xiaopeng
    Wang, Jianxi
    Journal of Railway Engineering Society, 41 (07): : 18 - 24
  • [26] Research on Underwater Object Detection Algorithm Based on YOLOv7
    Shi, Biying
    Zhang, Lianbo
    Tang, Jialin
    Yan Jinghui
    2024 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC 2024, 2024, : 501 - 506
  • [27] YOLOv7-SiamFF: Industrial defect detection algorithm based on improved YOLOv7
    Yi, Feifan
    Zhang, Haigang
    Yang, Jinfeng
    He, Liming
    Mohamed, Ahmad Sufril Azlan
    Gao, Shan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 114
  • [28] Steel surface defect detection based on lightweight YOLOv7
    Shi, Tao
    Wu, Rongxin
    Zhu, Wenxu
    Ma, Qingliang
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 306 - 313
  • [29] FOREST FIRE DETECTION BASED ON IMPROVED YOLOV7 MODELING
    Yang, Q.
    Zhang, T.
    Tong, X.
    Hu, L. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (04): : 3123 - 3136
  • [30] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448