NeRF-Texture: Texture Synthesis with Neural Radiance Fields

被引:14
|
作者
Huang, Yi-Hua [1 ,2 ]
Cao, Yan-Pei [3 ]
Lai, Yu-Kun [4 ]
Shan, Ying [3 ]
Gao, Lin [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Tencent PCG, ARC Lab, Shenzhen, Peoples R China
[4] Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales
[5] UCAS, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural radiance fields; texture synthesis; meso-structure texture; IMAGE;
D O I
10.1145/3588432.3591484
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Texture synthesis is a fundamental problem in computer graphics that would benefit various applications. Existing methods are effective in handling 2D image textures. In contrast, many real-world textures contain meso-structure in the 3D geometry space, such as grass, leaves, and fabrics, which cannot be effectively modeled using only 2D image textures. We propose a novel texture synthesis method with Neural Radiance Fields (NeRF) to capture and synthesize textures from given multi-view images. In the proposed NeRF texture representation, a scene with fine geometric details is disentangled into the meso-structure textures and the underlying base shape. This allows textures with meso-structure to be effectively learned as latent features situated on the base shape, which are fed into a NeRF decoder trained simultaneously to represent the rich view-dependent appearance. Using this implicit representation, we can synthesize NeRF-based textures through patch matching of latent features. However, inconsistencies between the metrics of the reconstructed content space and the latent feature space may compromise the synthesis quality. To enhance matching performance, we further regularize the distribution of latent features by incorporating a clustering constraint. Experimental results and evaluations demonstrate the effectiveness of our approach.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] NeRF-DA: Neural Radiance Fields Deblurring With Active Learning
    Hong, Sejun
    Kim, Eunwoo
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 261 - 265
  • [22] BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields
    Wang, Peng
    Zhao, Lingzhe
    Ma, Ruijie
    Liu, Peidong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4170 - 4179
  • [23] FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality
    Deng, Nianchen
    He, Zhenyi
    Ye, Jiannan
    Duinkharjav, Budmonde
    Chakravarthula, Praneeth
    Yang, Xubo
    Sun, Qi
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (11) : 3854 - 3864
  • [24] Point-NeRF: Point-based Neural Radiance Fields
    Xu, Qiangeng
    Xu, Zexiang
    Philip, Julien
    Bi, Sai
    Shu, Zhixin
    Sunkavalli, Kalyan
    Neumann, Ulrich
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5428 - 5438
  • [25] STs-NeRF: Novel View Synthesis of Space Targets Based on Improved Neural Radiance Fields
    Ma, Kaidi
    Liu, Peixun
    Sun, Haijiang
    Teng, Jiawei
    REMOTE SENSING, 2024, 16 (13)
  • [26] PW-NeRF: Progressive wavelet-mask guided neural radiance fields view synthesis
    Han, Xuefei
    Liu, Zheng
    Nan, Hai
    Zhao, Kai
    Zhao, Dongjie
    Jin, Xiaodan
    IMAGE AND VISION COMPUTING, 2024, 147
  • [27] SG-NeRF: Sparse-Input Generalized Neural Radiance Fields for Novel View Synthesis
    Xu, Kuo
    Li, Jie
    Li, Zhen-Qiang
    Cao, Yang-Jie
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 39 (04) : 785 - 797
  • [28] ID-NeRF: Indirect diffusion-guided neural radiance fields for generalizable view synthesis
    Li, Yaokun
    Wang, Shuaixian
    Tan, Guang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [29] NeRF-Art: Text-Driven Neural Radiance Fields Stylization
    Wang, Can
    Jiang, Ruixiang
    Chai, Menglei
    He, Mingming
    Chen, Dongdong
    Liao, Jing
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (08) : 4983 - 4996
  • [30] NeRF-SR: High Quality Neural Radiance Fields using Supersampling
    Wang, Chen
    Wu, Xian
    Guo, Yuan-Chen
    Zhang, Song-Hai
    Tai, Yu-Wing
    Hu, Shi-Min
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6445 - 6454