Protein-ligand binding affinity prediction exploiting sequence constituent homology

被引:1
|
作者
Abdel-Rehim, Abbi [1 ,7 ]
Orhobor, Oghenejokpeme [2 ]
Hang, Lou [3 ]
Ni, Hao [3 ,4 ]
King, Ross D. [1 ,4 ,5 ,6 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[2] Natl Inst Agr Bot, Cambridge CB3 0LE, England
[3] UCL, Dept Math, London WC1H 0AY, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Chalmers Univ Technol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden
[6] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
[7] Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
基金
英国工程与自然科学研究理事会;
关键词
SCORING FUNCTIONS;
D O I
10.1093/bioinformatics/btad502
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 datasets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding affinity for these complexes without the need to know the exact binding conformation of a ligand.Results The developed approach of using a small number of ligand and protein descriptors in conjunction with gradient boosting trees demonstrates high performance on the CASF datasets. This includes the commonly used benchmark CASF2016 where it appears to perform better than any other approach. This methodology is also useful for datasets where the spatial relationship between the ligand and protein is unknown as demonstrated using a large ChEMBL-derived dataset.Availability and implementation Code and data uploaded to https://github.com/abbiAR/PLBAffinity.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [22] A Novel Method for Protein-Ligand Binding Affinity Prediction and the Related Descriptors Exploration
    Li, Shuyan
    Xi, Lili
    Wang, Chengqi
    Li, Jiazhong
    Lei, Beilei
    Liu, Huanxiang
    Yao, Xiaojun
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) : 900 - 909
  • [23] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300
  • [24] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [25] SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction
    Hong, Qiansen
    Zhou, Guoqiang
    Qin, Yuke
    Shen, Jun
    Li, Haoran
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (16) : 12880 - 12891
  • [26] Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Yi, Yiqiang
    Wan, Xu
    Zhao, Kangfei
    Le, Ou-Yang
    Zhao, Peilin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4336 - 4347
  • [27] Hybrid Quantum Neural Network Approaches to Protein-Ligand Binding Affinity Prediction
    Avramouli, Maria
    Savvas, Ilias K.
    Vasilaki, Anna
    Tsipourlianos, Andreas
    Garani, Georgia
    MATHEMATICS, 2024, 12 (15)
  • [28] Binding Affinity Prediction for Protein-Ligand Complexes Based on β Contacts and B Factor
    Liu, Qian
    Kwoh, Chee Keong
    Li, Jinyan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (11) : 3076 - 3085
  • [29] Improved prediction of protein-ligand binding affinity on not-so-big data
    Wang, Renxiao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [30] Protein-ligand binding affinity prediction model based on graph attention network
    Yuan, Hong
    Huang, Jing
    Li, Jin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9148 - 9162