Sustainable residential building energy consumption forecasting for smart cities using optimal weighted voting ensemble learning

被引:11
|
作者
Alymani, Mofadal [1 ]
Mengash, Hanan Abdullah [2 ]
Aljebreen, Mohammed [3 ]
Alasmari, Naif [4 ]
Allafi, Randa [5 ]
Alshahrani, Hussain [6 ]
Elfaki, Mohamed Ahmed [6 ]
Hamza, Manar Ahmed [7 ]
Abdelmageed, Amgad Atta [7 ]
机构
[1] Shaqra Univ, Dept Comp Engn, Coll Comp & Informat Technol, Shaqra, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Dept Informat Syst, Coll Comp & Informat Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] King Saud Univ, Dept Comp Sci, Community Coll, POB 28095, Riyadh 11437, Saudi Arabia
[4] King Khalid Univ, Dept Informat Syst, Coll Sci & Art Mahayil, Riyadh, Saudi Arabia
[5] Northern Border Univ, Dept Computers & Informat Technol, Coll Arts & Sci, Ar Ar, Saudi Arabia
[6] Shaqra Univ, Dept Comp Sci, Coll Comp & Informat Technol, Shaqra, Saudi Arabia
[7] Prince Sattam Bin Abdulaziz Univ, Dept Comp & Self Dev, Preparatory Year Deanship, Alkharj, Saudi Arabia
关键词
Residential buildings; Levy flight; Sustainable environment; Energy consumption prediction; Deep learning; Artificial intelligence; SYSTEM;
D O I
10.1016/j.seta.2023.103271
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent times, smart-built environments have gone through an incessant transformation, becoming more independent and sensitive ecosystems which can balance energy consumption and user comfort, whilst also achieving higher order of safety for users. The consumption of a high volume of energy in buildings has resulted in numerous environmental issues which have adverse effects on human survival. The estimation of building energy use becomes necessary to conserve energy and enhance decision-making in reducing energy usage. In addition, constructing energy-efficient buildings will help to reduce the total energy utilized in newly constructed buildings. The machine Learning (ML) technique was regarded as the most suitable method to produce favourable results in forecasting tasks. Therefore, in numerous studies, ML was implemented in the domain of energy utilization in operational buildings. This article introduces an Improved Moth Flame Optimization with Weighted Voting Ensemble Learning (IMFO-WVEL) model for Energy Consumption Forecasting in Residential Buildings. The presented IMFO-WVEL model majorly aims to forecast energy utilization in residential buildings. To accomplish this, the presented IMFO-WVEL model follows the initial stage of data preprocessing to make it compatible with further processing. To forecast the energy consumption in residential buildings, the WVEL technique comprises three DL models namely stacked autoencoder (SAE), deep neural network (DNN), and bidirectional long short-term memory (BiLSTM) is used. Finally, the IMFO algorithm is derived by the integration of MFO with the Levy flight (LF) strategy and is applied for the hyperparameter tuning process. The experimental validation of the IMFO-WVEL technique is performed under distinct aspects. The comparison study exhibited the promising performance of the IMFO-WVEL technique over recent approaches in terms of several performance measures.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Residential power consumption forecasting in the smart grid using ANFIS system
    Nokar, Mahmoud Abbasi
    Tashtarian, Farzad
    Moghaddam, Mohammad Hossein Yaghmaee
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2017, : 111 - 118
  • [22] An ensemble learning framework for anomaly detection in building energy consumption
    Araya, Daniel B.
    Grolinger, Katarina
    ElYamany, Hany F.
    Capretz, Miriam A. M.
    Bitsuamlak, Girma
    ENERGY AND BUILDINGS, 2017, 144 : 191 - 206
  • [23] Using an ensemble learning framework to predict residential energy consumption in the hot and humid climate of Iran
    Qavidelfardi, Zahra
    Tahsildoost, Mohammad
    Zomorodian, Zahra Sadat
    ENERGY REPORTS, 2022, 8 : 12327 - 12347
  • [24] Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings
    Duc-Hoc Tran
    Duc-Long Luong
    Chou, Jui-Sheng
    ENERGY, 2020, 191
  • [25] Deep Learning Model for Forecasting Institutional Building Energy Consumption
    Mlangeni, Simangaliso
    Ezugwu, Absalom E.
    Chiroma, Haruna
    2020 CONFERENCE ON INFORMATION COMMUNICATIONS TECHNOLOGY AND SOCIETY (ICTAS), 2020,
  • [26] A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
    Tang, Ling
    Yu, Lean
    Wang, Shuai
    Li, Jianping
    Wang, Shouyang
    APPLIED ENERGY, 2012, 93 : 432 - 443
  • [27] Robust building energy consumption forecasting using an online learning approach with R ranger
    Moon, Jihoon
    Park, Sungwoo
    Rho, Seungmin
    Hwang, Eenjun
    JOURNAL OF BUILDING ENGINEERING, 2022, 47
  • [28] Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms
    Solano, Edna S.
    Affonso, Carolina M.
    SUSTAINABILITY, 2023, 15 (10)
  • [29] Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques
    Olu-Ajayi, Razak
    Alaka, Hafiz
    Sulaimon, Ismail
    Sunmola, Funlade
    Ajayi, Saheed
    JOURNAL OF BUILDING ENGINEERING, 2022, 45
  • [30] Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning
    Okuboyejo, Damilola A. A.
    Olugbara, Oludayo O. O.
    ALGORITHMS, 2022, 15 (12)