A Survey on Evolutionary Neural Architecture Search

被引:263
|
作者
Liu, Yuqiao [1 ]
Sun, Yanan [1 ,2 ]
Xue, Bing [3 ]
Zhang, Mengjie [3 ]
Yen, Gary G. [4 ]
Tan, Kay Chen [5 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[3] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
[4] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
[5] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer architecture; Optimization; Convolutional neural networks; Search problems; Neural networks; Deep learning; Statistics; evolutionary computation (EC); evolutionary neural architecture search (NAS); image classification; PARTICLE SWARM OPTIMIZATION; SHORT-TERM-MEMORY; GENETIC ALGORITHM; NETWORKS; RECOGNITION; COLONY;
D O I
10.1109/TNNLS.2021.3100554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also not easy to realize due to the rare expertise in practice. Neural architecture search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, the evolutionary computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This article reviews over 200 articles of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles and justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field.
引用
收藏
页码:550 / 570
页数:21
相关论文
共 50 条
  • [31] Hybrid Architecture-Based Evolutionary Robust Neural Architecture Search
    Yang, Shangshang
    Sun, Xiangkun
    Xu, Ke
    Liu, Yuanchao
    Tian, Ye
    Zhang, Xingyi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2919 - 2934
  • [32] Neural Architecture Search Benchmarks: Insights and Survey
    Chitty-Venkata, Krishna Teja
    Emani, Murali
    Vishwanath, Venkatram
    Somani, Arun K.
    IEEE ACCESS, 2023, 11 : 25217 - 25236
  • [33] Neural Architecture Search Survey: A Hardware Perspective
    Chitty-Venkata, Krishna Teja
    Somani, Arun K.
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [34] Medical Neural Architecture Search: Survey and Taxonomy
    Benmeziane, Hadjer
    Hamzaoui, Imane
    Cherif, Zayneb
    El Maghraoui, Kaoutar
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 7932 - 7940
  • [35] A surrogate evolutionary neural architecture search algorithm for graph neural networks
    Liu, Yang
    Liu, Jing
    APPLIED SOFT COMPUTING, 2023, 144
  • [36] CURIOUS: Efficient Neural Architecture Search Based on a Performance Predictor and Evolutionary Search
    Hassantabar, Shayan
    Dai, Xiaoliang
    Jha, Niraj K.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 4975 - 4990
  • [37] EQNAS: Evolutionary Quantum Neural Architecture Search for Image Classification
    Li, Yangyang
    Liu, Ruijiao
    Hao, Xiaobin
    Shang, Ronghua
    Zhao, Peixiang
    Jiao, Licheng
    NEURAL NETWORKS, 2023, 168 : 471 - 483
  • [38] Guided evolutionary neural architecture search with efficient performance estimation
    Lopes, Vasco
    Santos, Miguel
    Degardin, Bruno
    Alexandre, Luis A.
    NEUROCOMPUTING, 2024, 584
  • [39] EvoAAA: An evolutionary methodology for automated neural autoencoder architecture search
    Charte, Francisco
    Rivera, Antonio J.
    Martinez, Francisco
    del Jesus, Maria J.
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2020, 27 (03) : 211 - 231
  • [40] Knowledge-aware evolutionary graph neural architecture search
    Wang, Chao
    Zhao, Jiaxuan
    Li, Lingling
    Jiao, Licheng
    Liu, Fang
    Liu, Xu
    Yang, Shuyuan
    KNOWLEDGE-BASED SYSTEMS, 2025, 309