Deep-NFA: A deep a contrario framework for tiny object detection

被引:6
|
作者
Ciocarlan, Alina [1 ,2 ]
Le Hegarat-Mascle, Sylvie [2 ]
Lefebvre, Sidonie [1 ]
Woiselle, Arnaud [3 ]
机构
[1] Univ Paris Saclay, ONERA, DOTA & LMA2S, F-91123 Palaiseau, France
[2] Paris Saclay Univ, SATIE, F-91405 Orsay, France
[3] Safran Elect & Def, F-91344 Massy, France
关键词
A contrario reasoning; One-class semantic segmentation; Deep learning; Convolutional neural networks; Small target detection; CRACK DETECTION;
D O I
10.1016/j.patcog.2024.110312
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of tiny objects is a challenging task in computer vision. Conventional object detection methods have difficulties in finding the balance between high detection rate and low false alarm rate. In the literature, some methods have addressed this issue by enhancing the feature map responses for small objects, but without guaranteeing robustness with respect to the number of false alarms induced by background elements. To tackle this problem, we introduce an a contrario decision criterion into the learning process to take into account the unexpectedness of tiny objects. This statistic criterion enhances the feature map responses while controlling the number of false alarms (NFA) and can be integrated as an add-on into any semantic segmentation neural network. Our add-on NFA module not only allows us to obtain competitive results for small target, road crack and ship detection tasks respectively, but also leads to more robust and interpretable results.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Learning Deep Relationship for Object Detection
    Xu, Nuo
    Huo, Chunlei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (01) : 273 - 276
  • [22] Active Learning for Deep Object Detection
    Brust, Clemens-Alexander
    Kaeding, Christoph
    Denzler, Joachim
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 181 - 190
  • [23] DEEP NETWORK PRUNING FOR OBJECT DETECTION
    Ghosh, Sanjukta
    Srinivasa, Shashi K. K.
    Amon, Peter
    Hutter, Andreas
    Kaup, Andre
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3915 - 3919
  • [24] Deep Learning Model for Object Detection
    Hristeva, T.
    Marinova, M.
    Lazarov, V.
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [25] Influence of Object Detection in Deep Learning
    Yu, Rui
    Xu, Xiangyang
    Wang, Zhigang
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (05) : 683 - 688
  • [26] The Object Detection Based on Deep Learning
    Tang, Cong
    Feng, Yunsong
    Yang, Xing
    Zheng, Chao
    Zhou, Yuanpu
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 723 - 728
  • [27] Deep Learning for Combo Object Detection
    Zhao, Jing
    Ardekani, Iman Tabatabaei
    Pang, Shaoning
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 125 - 137
  • [28] Object Detection based on Deep Learning
    Dong, Junyao
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VIRTUAL REALITY, AND VISUALIZATION (AIVRV 2021), 2021, 12153
  • [29] Application of Deep Learning in Object Detection
    Zhou, Xinyi
    Gong, Wei
    Fu, WenLong
    Du, Fengtong
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 631 - 634
  • [30] Moving Object Detection With Deep CNNs
    Zhu, Haidi
    Yan, Xin
    Tang, Hongying
    Chang, Yuchao
    Li, Baoqing
    Yuan, Xiaobing
    IEEE ACCESS, 2020, 8 : 29729 - 29741