Numerical Feature Selection and Hyperbolic Tangent Feature Scaling in Machine Learning-Based Detection of Anomalies in the Computer Network Behavior

被引:5
|
作者
Protic, Danijela [1 ]
Stankovic, Miomir [2 ]
Prodanovic, Radomir [1 ]
Vulic, Ivan [3 ]
Stojanovic, Goran M. [4 ]
Simic, Mitar [4 ]
Ostojic, Gordana [4 ]
Stankovski, Stevan [4 ]
机构
[1] Ctr Appl Math & Elect, Belgrade 11000, Serbia
[2] Math Inst SASA, Belgrade 11000, Serbia
[3] Univ Def, Mil Acad, Belgrade 11042, Serbia
[4] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
关键词
machine learning; binary classification; intrusion detection; feature scaling; feature selection; INTRUSION DETECTION SYSTEM; MUTUAL INFORMATION; DECISION TREE; PERFORMANCE; ALGORITHMS;
D O I
10.3390/electronics12194158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly-based intrusion detection systems identify the computer network behavior which deviates from the statistical model of typical network behavior. Binary classifiers based on supervised machine learning are very accurate at classifying network data into two categories: normal traffic and anomalous activity. Most problems with supervised learning are related to the large amount of data required to train the classifiers. Feature selection can be used to reduce datasets. The goal of feature selection is to select a subset of relevant input features to optimize the evaluation and improve performance of a given classifier. Feature scaling normalizes all features to the same range, preventing the large size of features from affecting classification models or other features. The most commonly used supervised machine learning models, including decision trees, support vector machine, k-nearest neighbors, weighted k-nearest neighbors and feedforward neural network, can all be improved by using feature selection and feature scaling. This paper introduces a new feature scaling technique based on a hyperbolic tangent function and damping strategy of the Levenberg-Marquardt algorithm.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Network Intrusion Detection Through Machine Learning With Efficient Feature Selection
    Desai, Rohan
    Gopalakrishnan, Venkatesh Tiruchirai
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [22] Phishing detection based on machine learning and feature selection methods
    Almseidin M.
    Abu Zuraiq A.M.
    Al-kasassbeh M.
    Alnidami N.
    International Journal of Interactive Mobile Technologies, 2019, 13 (12) : 71 - 183
  • [23] Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction
    Talukder, Md. Alamin
    Islam, Md. Manowarul
    Uddin, Md Ashraf
    Hasan, Khondokar Fida
    Sharmin, Selina
    Alyami, Salem A.
    Moni, Mohammad Ali
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [24] Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction
    Md. Alamin Talukder
    Md. Manowarul Islam
    Md Ashraf Uddin
    Khondokar Fida Hasan
    Selina Sharmin
    Salem A. Alyami
    Mohammad Ali Moni
    Journal of Big Data, 11
  • [25] Enhancing malware detection with feature selection and scaling techniques using machine learning models
    Hasan, Rakibul
    Biswas, Barna
    Samiun, Md
    Saleh, Mohammad Abu
    Prabha, Mani
    Akter, Jahanara
    Joya, Fatema Haque
    Abdullah, Masuk
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Feature extraction for machine learning-based intrusion detection in IoT networks
    Mohanad Sarhan
    Siamak Layeghy
    Nour Moustafa
    Marcus Gallagher
    Marius Portmann
    Digital Communications and Networks, 2024, 10 (01) : 205 - 216
  • [27] Feature extraction for machine learning-based intrusion detection in IoT networks
    Sarhan, Mohanad
    Layeghy, Siamak
    Moustafa, Nour
    Gallagher, Marcus
    Portmann, Marius
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 205 - 216
  • [28] Impact of Feature Normalization on Machine Learning-Based Human Fall Detection
    Fayad, Moustafa
    Hachani, Mohamed-Yacine
    Mostefaoui, Ahmed
    Merzoug, Mohammed Amine
    Lajoie, Isabelle
    Yahiaoui, Reda
    MANAGEMENT OF DIGITAL ECOSYSTEMS, MEDES 2023, 2024, 2022 : 147 - 161
  • [29] Feature selection for learning-machine numerical observer
    Brankov, Jovan G.
    Pretorius, P. Hendrik
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 3714 - +
  • [30] An Efficient Machine Learning-Based Feature Optimization Model for the Detection of Dyslexia
    Ahmad, Nazir
    Rehman, Mohammed Burhanur
    El Hassan, Hatim Mohammed
    Ahmad, Iqrar
    Rashid, Mamoon
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022