Sample size and power determination for multiparameter evaluation in nonlinear regression models with potential stratification
被引:0
|
作者:
Martens, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Med Coll Wisconsin, Div Biostat, Milwaukee, WI USA
Ctr Int Blood & Marrow Transplant Res, Milwaukee, WI USA
Med Coll Wisconsin, Div Biostat, Milwaukee, WI 53226 USA
Ctr Int Blood & Marrow Transplant Res, Milwaukee, WI 53226 USAMed Coll Wisconsin, Div Biostat, Milwaukee, WI USA
Martens, Michael J.
[1
,2
,3
,4
]
Kim, Soyoung
论文数: 0引用数: 0
h-index: 0
机构:
Med Coll Wisconsin, Div Biostat, Milwaukee, WI USA
Ctr Int Blood & Marrow Transplant Res, Milwaukee, WI USAMed Coll Wisconsin, Div Biostat, Milwaukee, WI USA
Kim, Soyoung
[1
,2
]
Ahn, Kwang Woo
论文数: 0引用数: 0
h-index: 0
机构:
Med Coll Wisconsin, Div Biostat, Milwaukee, WI USA
Ctr Int Blood & Marrow Transplant Res, Milwaukee, WI USAMed Coll Wisconsin, Div Biostat, Milwaukee, WI USA
Ahn, Kwang Woo
[1
,2
]
机构:
[1] Med Coll Wisconsin, Div Biostat, Milwaukee, WI USA
[2] Ctr Int Blood & Marrow Transplant Res, Milwaukee, WI USA
[3] Med Coll Wisconsin, Div Biostat, Milwaukee, WI 53226 USA
[4] Ctr Int Blood & Marrow Transplant Res, Milwaukee, WI 53226 USA
Cox regression;
Fine-Gray model;
generalized linear models;
sample size;
power determination;
stratification;
study design;
LIKELIHOOD RATIO TESTS;
FORMULA;
TRANSPLANT;
D O I:
10.1111/biom.13897
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Sample size and power determination are crucial design considerations for biomedical studies intending to formally test the effects of key variables on an outcome. Other known prognostic factors may exist, necessitating the use of techniques for covariate adjustment when conducting this evaluation. Moreover, the main interest often includes assessing the impact of more than one variable on an outcome, such as multiple treatments or risk factors. Regression models are frequently employed for these purposes, formalizing this assessment as a test of multiple regression parameters. But, the presence of multiple variables of primary interest and correlation between covariates can complicate sample size/power calculation. Given the paucity of available sample size formulas for this context, these calculations are often performed via simulation, which can be both time-consuming as well as demanding extensive probability modeling. We propose a simpler, general approach to sample size and power determination that may be applied when testing multiple parameters in commonly used regression models, including generalized linear models as well as ordinary and stratified versions of the Cox and Fine-Gray models. Through both rigorous simulations and theoretical derivations, we demonstrate the formulas' accuracy in producing sample sizes that will meet the type I error rate and power specifications of the study design.
机构:
Genentech Inc, Dept Biostat, 460 Point San Bruno Blvd, San Francisco, CA 94080 USAGenentech Inc, Dept Biostat, 460 Point San Bruno Blvd, San Francisco, CA 94080 USA
Hu, Nan
Mackey, Howard
论文数: 0引用数: 0
h-index: 0
机构:
Genentech Inc, Dept Biostat, 460 Point San Bruno Blvd, San Francisco, CA 94080 USAGenentech Inc, Dept Biostat, 460 Point San Bruno Blvd, San Francisco, CA 94080 USA
Mackey, Howard
Thomas, Ronald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Neurosci, San Diego, CA 92103 USAGenentech Inc, Dept Biostat, 460 Point San Bruno Blvd, San Francisco, CA 94080 USA