Image-based Conflict Detection with Convolutional Neural Network under Weather Uncertainty

被引:0
|
作者
Dang, Phuoc H. [1 ]
Mohamed, M. A. [1 ]
Alam, Sameer [1 ]
机构
[1] Nanyang Technol Univ, Air Traff Management Res Inst, Sch Mech & Aerosp Engn, Singapore 637460, Singapore
基金
新加坡国家研究基金会;
关键词
conflict detection; air traffic management; image classification; convolutional neural network;
D O I
10.1109/ICNS58246.2023.10124287
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Detection of air traffic conflicts in a weather constrained airspace is challenging given the inherent uncertainties and aircraft maneuvers which give rise to new conflict birth-points. Traditional conflict detection tools are untenable in such situations as they primarily rely on flight-plan, aircraft performance characteristics and trajectories projection in short-term (2-4 minutes). This work adopts a convolutional neural network (CNN) model, on radar-like images, for conflict detection task in a constrained airspace. The CNN models are well-known for their learning capabilities when dealing with unstructured data like pixelated images. In this study, historical ADS-B data with weather constrained airspace is input as pixelated images to the CNN model. The learned model was compared with two well-known models for conflict detection (CD). The results demonstrated that the CNN based model was able to predict off-nominal conflict with high accuracy. The CNN model also demonstrated its ability to predict off-nominal conflict early for a given ten-minute look-ahead window. The CNN based model also showed low levels of false alarm signals as compared to other models. Generally speaking, all models showed low probabilities of miss-detection, mostly in the early phase of the 10-minute look-ahead window. This novel approach may serve to develop effective CD algorithms with longer look-ahead time and may aid in early detection of air traffic conflicts in non-nominal scenarios.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Image-based Kinship Verification using Fusion Convolutional Neural Network
    Rachmadi, Reza Fuad
    Purnama, I. Ketut Eddy
    Nugroho, Supeno Mardi Susiki
    Suprapto, Yoyon Kusnendar
    2019 IEEE 11TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (IWCIA 2019), 2019, : 59 - 65
  • [22] Image-based wheat grain classification using convolutional neural network
    Lingwal, Surabhi
    Bhatia, Komal Kumar
    Tomer, Manjeet Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35441 - 35465
  • [23] Weather Image Recognition Based on Convolutional Neural Network and Transfer Learning
    Gao, Zunhai
    Qiu, Yuzhan
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 631 - 638
  • [24] Image Forgery Detection Based on the Convolutional Neural Network
    Feng Guorui
    Wu Jian
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 266 - 270
  • [25] Image Resampling Detection Based on Convolutional Neural Network
    Liang, Yaohua
    Fang, Yanmei
    Luo, Shangjun
    Chen, Bing
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 257 - 261
  • [26] Image Deblocking Detection Based on a Convolutional Neural Network
    Liu, Xianjin
    Lu, Wei
    Liu, Wanteng
    Luo, Shangjun
    Liang, Yaohua
    Li, Ming
    IEEE ACCESS, 2019, 7 : 24632 - 24639
  • [27] Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting
    Khaki, Saeed
    Pham, Hieu
    Han, Ye
    Kuhl, Andy
    Kent, Wade
    Wang, Lizhi
    SENSORS, 2020, 20 (09)
  • [28] An Improved Deep Convolutional Neural Network for Image-Based Apple Plant Leaf Disease Detection and Identification
    Mahato, Dharmendra Kumar
    Pundir, Amit
    Saxena, Geetika Jain
    Journal of The Institution of Engineers (India): Series A, 2022, 103 (04) : 975 - 987
  • [29] An Improved Deep Convolutional Neural Network for Image-Based Apple Plant Leaf Disease Detection and Identification
    Mahato D.K.
    Pundir A.
    Saxena G.J.
    Journal of The Institution of Engineers (India): Series A, 2022, 103 (4) : 975 - 987
  • [30] Uncertainty in image-based change detection
    Agouris, P
    Gyftakis, S
    Stefanidis, A
    ACCURACY 2000, PROCEEDINGS, 2000, : 1 - 8