Printable piezoresistive polymer composites for self-sensing medical catheter device applications

被引:7
|
作者
Pimentela, E. [1 ,2 ,3 ]
Costa, P. [2 ]
Tubio, C. R. [4 ]
Vilaca, J. L. [1 ,3 ]
Costa, C. M. [2 ,5 ,6 ]
Lanceros-Mendez, S. [2 ,4 ,5 ,7 ]
Miranda, D. [1 ,3 ]
机构
[1] IPCA, 2Ai, Sch Technol, Barcelos, Portugal
[2] Univ Minho, Phys Ctr Minho & Porto Univ CF UM UP, P-4710057 Braga, Portugal
[3] LASI Associate Lab Intelligent Syst, Guimaraes, Portugal
[4] UPV EHU Sci Pk, Basque Ctr Mat, BCMat Applicat & Nanostruct, Leioa 48940, Spain
[5] Univ Minho, Lab Phys Mat & Emergent Technol, LapMET, P-4710057 Braga, Portugal
[6] Univ Minho, IB S Inst Sci & Innovat Sustainabil, P-4710057 Braga, Portugal
[7] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
关键词
A; Carbon nanotubes; Nano composites; Polymer -matrix composites (PMCs); Smart materials; CARBON NANOTUBES; VESICOURETERAL REFLUX; SENSORS; NANOCOMPOSITES; TRANSITIONS; PERFORMANCE; SEBS;
D O I
10.1016/j.compscitech.2023.110071
中图分类号
TB33 [复合材料];
学科分类号
摘要
There is a constant demand for new and/or improved health treatments that require flexible sensor devices. This is particularly relevant in relation to neurogenic bladder dysfunction. In this context, polymer composites have been developed based on three different matrices, carboxymethyl cellulose (CMC), styrene-ethylene/butylene-styrene (SEBS) and polyvinyl alcohol (PVA), with different con-centrations of multiwalled carbon-nanotubes (CNT) filler contents for catheter medical device application. The mechanical properties of the nanocomposites are critically dependent on the polymeric matrix and also depend on CNT content with maximum strain is about 4%, 100% and 700% for CMC, PVA and SEBS materials, respectively. Electrical conductivity increases near 10 orders of magnitude up to 0.11 S/m for PVA with 5 wt percentage (wt.%) of CNT, one magnitude order than the most filled PVA and CMC composites. The percolation threshold (f(c)) of the composites are f(c) = 3 wt% for CMC, f(c) = 2 wt% for SEBS, and f(c) = 1 wt% for PVA as polymer matrices. Furthermore, the functional performance of the composites is characterized by the piezoresistive response, with a gauge factor (GF) ranging between 1 and 6 for the different composites. Finally, a self-sending catheter device was developed as a proof-of-concept, based on a PVA composite with a GF similar to 1.5. demonstrating proper adhesion and excellent sensing behavior at bending up to 7 mm. Thus, it is demonstrated that screen-printable piezoresistive sustainable composites can be developed for medical application with excellent electrical and mechanical properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Self-sensing applications for electromagnetic actuators
    Hanson, B
    Levesley, M
    SENSORS AND ACTUATORS A-PHYSICAL, 2004, 116 (02) : 345 - 351
  • [22] Smart Self-Sensing Piezoresistive Composite Materials for Structural Health Monitoring
    Qhobosheane, Relebohile George
    Rabby, Monjur Morshed
    Vadlamudi, Vamsee
    Reifsnider, Kenneth
    Raihan, Rassel
    CERAMICS-SWITZERLAND, 2022, 5 (03): : 253 - 268
  • [23] Design of piezoelectric self-sensing microinjection device
    Wei, X. W.
    Sun, L. P.
    Su, C.
    Shi, Y. L.
    Li, J. Q.
    20TH ANNUAL CONFERENCE AND 9TH INTERNATIONAL CONFERENCE OF CHINESE SOCIETY OF MICRO-NANO TECHNOLOGY, 2019, 1209
  • [24] Experiments with self-sensing IPMC actuating device
    Kruusamaee, Karl
    Brunetto, Paola
    Graziani, Salvatore
    Fortuna, Luigi
    Kodu, Margus
    Jaaniso, Raivo
    Punning, Andres
    Aabloo, Alvo
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2010, 2010, 7642
  • [25] Piezoresistive response of self-sensing asphalt concrete containing carbon fiber
    Cui, Qi
    Feng, Zhen-gang
    Shen, Ruoting
    Li, Xiangnan
    Wang, Zhuang
    Yao, Dongdong
    Li, Xinjun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 426
  • [26] Self-sensing properties and piezoresistive effect of high ductility cementitious composite
    Han, Jinsheng
    Pan, Jinlong
    Cai, Jingming
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 323
  • [27] Self-sensing and piezoresistive performance of carbon fibre textile-reinforced cementitious composites under tensile loading
    Elseady, Amir A. E.
    Zhuge, Yan
    Ma, Xing
    Chow, Christopher W. K.
    Lee, Ivan
    Zeng, Junjie
    COMPOSITE STRUCTURES, 2025, 356
  • [28] In situ self-sensing fibre reinforced composites
    Hayes, S
    Liu, T
    Brooks, D
    Monteith, S
    Ralph, B
    Vickers, S
    Fernando, GF
    SMART MATERIALS & STRUCTURES, 1997, 6 (04): : 432 - 440
  • [29] Self-sensing properties of Engineered Cementitious Composites
    Huang, Yi
    Li, Hongliang
    Qian, Shunzhi
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 174 : 253 - 262
  • [30] Self-Sensing Cementitious Composites: Review and Perspective
    Bekzhanova, Zere
    Memon, Shazim Ali
    Kim, Jong Ryeol
    NANOMATERIALS, 2021, 11 (09)