BESICOVITCH ALMOST PERIODIC STOCHASTIC PROCESSES AND ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED STOCHASTIC NEURAL NETWORKS

被引:10
|
作者
Li, Yongkun [1 ]
Wang, Xiaohui [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Besicovitch almost periodic stochastic process in distribution sense; stochastic neural networks; Clifford-valued neural networks; Besicovitch almost periodic solutions in distribution sense; DIFFERENTIAL-EQUATIONS;
D O I
10.3934/dcdsb.2022162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, to begin with, we introduce the concept of Besicovitch almost periodic stochastic processes in distribution sense and study the relationship between it and the concept of Besicovitch almost periodic stochastic processes in p-th mean sense. In addition, we take a class of Clifford-valued stochastic neural networks with time-varying delays as an example to investigate the existence and uniqueness of Besicovitch almost periodic solutions in distribution sense of this class of neural networks by using Banach fixed point theorem and a variant of Gronwall lemma. Moreover, we study the global exponential stability of this unique Besicovitch almost periodic solution in distribution sense by using inequality techniques. Finally, we give an example to illustrate our results. The results of this paper are completely new
引用
收藏
页码:2154 / 2183
页数:30
相关论文
共 50 条