A boson-fermion correspondence in cohomological Donaldson-Thomas theory

被引:2
|
作者
Davison, Ben [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
DT theory; vanishing cycles; preprojective algebras; Kac polynomials; QUIVER VARIETIES; HALL ALGEBRA; REPRESENTATIONS; INVARIANTS;
D O I
10.1017/S001708952200009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a fermionisation procedure for the cohomological Hall algebra H-Pi Q of representations of a preprojective algebra, that selectively switches the cohomological parity of the BPS Lie algebra from even to odd. We do so by determining the cohomological Donaldson-Thomas invariants of central extensions of preprojective algebras studied in the work of Etingof and Rains, via deformed dimensional reduction. Via the same techniques, we determine the Borel-Moore homology of the stack of representations of the mu-deformed preprojective algebra introduced by Crawley-Boevey and Holland, for all dimension vectors. This provides a common generalisation of the results of Crawley-Boevey and Van den Bergh on the cohomology of smooth moduli schemes of representations of deformed preprojective algebras and my earlier results on the Borel-Moore homology of the stack of representations of the undeformed preprojective algebra.
引用
收藏
页码:S28 / S52
页数:25
相关论文
共 50 条
  • [21] DONALDSON-THOMAS THEORY AND CLUSTER ALGEBRAS
    Nagao, Kentaro
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (07) : 1313 - 1367
  • [22] LOCALIZED DONALDSON-THOMAS THEORY OF SURFACES
    Gholampour, Amin
    Sheshmani, Artan
    Yau, Shing-Tung
    AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (02) : 405 - 442
  • [23] Evidence for the Gromov-Witten/Donaldson-Thomas correspondence
    Gholampour, Amin
    Song, Yinan
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (04) : 623 - 630
  • [24] BOSON-FERMION CORRESPONDENCE IN QUANTUM-THEORY AND QUANTIZATION OF SPINOR FIELDS
    GARBACZEWSKI, P
    ACTA PHYSICA AUSTRIACA, 1977, : 445 - 461
  • [25] Categorical Bernstein operators and the Boson-Fermion correspondence
    Gonzalez, Nicolle S.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (04):
  • [26] Categorical Bernstein operators and the Boson-Fermion correspondence
    Nicolle S. González
    Selecta Mathematica, 2020, 26
  • [27] Spinor Representations of and Quantum Boson-Fermion Correspondence
    Jintai Ding
    Communications in Mathematical Physics, 1999, 200 : 399 - 420
  • [28] The boson-fermion correspondence from linear ODEs
    Gatto, Letterio
    Salehyan, Parham
    JOURNAL OF ALGEBRA, 2014, 415 : 162 - 183
  • [29] Boson-fermion correspondence from factorization spaces
    Yanagida, Shintarou
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 55 - 63
  • [30] Boson-fermion pairing in a boson-fermion environment
    Storozhenko, A
    Schuck, P
    Suzuki, T
    Yabu, H
    Dukelsky, J
    PHYSICAL REVIEW A, 2005, 71 (06):