Cohomogeneity one actions on symmetric spaces of noncompact type and higher rank

被引:0
|
作者
Diaz-Ramos, Jose Carlos [1 ,2 ]
Dominguez-Vazquez, Miguel [1 ,2 ]
Otero, Tomas [1 ,2 ]
机构
[1] CITMAga, Santiago De Compostela 15782, Spain
[2] Univ Santiago Compostela, Dept Math, La Coruna, Spain
关键词
Cohomogeneity one action; Symmetric space; Noncompact type; Reducible; Canonical extension; Nilpotent construction; HYPERPOLAR; FOLIATIONS;
D O I
10.1016/j.aim.2023.109165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new structural result for cohomogeneity one actions on (not necessarily irreducible) symmetric spaces of noncompact type and arbitrary rank. We apply this result to classify cohomogeneity one actions on the spaces SLn(R)/SOn, n & GE; 2, up to orbit equivalence. We also reduce the classification problem on a reducible space to the classification on each one of its irreducible factors, which in particular allows to classify cohomogeneity one actions on any finite product of hyperbolic spaces.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Submanifold geometry in symmetric spaces of noncompact type
    Carlos Diaz-Ramos, J.
    Dominguez-Vazquez, Miguel
    Sanmartin-Lopez, Victor
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 75 - 110
  • [32] A MOIRE PATTERN ON SYMMETRIC SPACES OF THE NONCOMPACT TYPE
    Afgoustidis, Alexandre
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (09) : 3747 - 3758
  • [33] A Geometric Mean for Symmetric Spaces of Noncompact Type
    Liao, Ming
    Liu, Xuhua
    Tam, Tin-Yau
    JOURNAL OF LIE THEORY, 2014, 24 (03) : 725 - 736
  • [34] Geometrical finiteness of symmetric spaces of noncompact type
    Kim, I
    FORUM MATHEMATICUM, 2000, 12 (01) : 97 - 108
  • [35] Resolvent estimates on symmetric spaces of noncompact type
    Kaizuka, Koichi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) : 895 - 926
  • [36] Submanifold geometry in symmetric spaces of noncompact type
    J. Carlos Díaz-Ramos
    Miguel Domínguez-Vázquez
    Víctor Sanmartín-López
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 75 - 110
  • [37] Factorization theorems on symmetric spaces of noncompact type
    Graczyk, P
    JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) : 375 - 383
  • [38] Factorization Theorems on Symmetric Spaces of Noncompact Type
    Piotr Graczyk
    Journal of Theoretical Probability, 1999, 12 : 375 - 383
  • [39] Rigidity for convex-cocompact actions on rank-one symmetric spaces
    David, Guy C.
    Kinneberg, Kyle
    GEOMETRY & TOPOLOGY, 2018, 22 (05) : 2757 - 2790
  • [40] ON ASYMPTOTIC PLATEAU'S PROBLEM FOR CMC HYPERSURFACES ON RANK 1 SYMMETRIC SPACES OF NONCOMPACT TYPE
    Casteras, Jean-Baptiste
    Ripoll, Jaime B.
    ASIAN JOURNAL OF MATHEMATICS, 2016, 20 (04) : 695 - 708