Motional consensus of self-propelled particles

被引:1
|
作者
Qian, Jia-xin [1 ,2 ]
Wang, Jun [1 ,3 ]
Lu, Yan-qing [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL; ORDER;
D O I
10.1038/s41598-023-35238-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The motional consensus of self-propelled particles is studied in both noise-free cases and cases with noise by the standard Vicsek model. In the absence of noise, we propose a simple method, using grid-based technique and defining the normalized variance of the ratio of the number of particles locally to globally, to quantitatively study the movement pattern of the system by the spatial distribution of the particles and the degree of aggregation of particles. It is found that the weaker correlation of velocity leads to larger degree of aggregation of the particles. In the cases with noise, we quantify the competition between velocity alignment and noise by considering the difference of the variety of order parameter result from the velocity alignment and noise. The variation of the effect of noise on motional consensus is non-monotonic for the change of the probability distribution of noise from uniform to non-uniform. Our results may be useful and encourage further efforts in exploring the basic principles of collective motion.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Gravitaxis of asymmetric self-propelled colloidal particles
    ten Hagen, Borge
    Kuemmel, Felix
    Wittkowski, Raphael
    Takagi, Daisuke
    Loewen, Hartmut
    Bechinger, Clemens
    NATURE COMMUNICATIONS, 2014, 5
  • [32] Gravitaxis of asymmetric self-propelled colloidal particles
    Borge ten Hagen
    Felix Kümmel
    Raphael Wittkowski
    Daisuke Takagi
    Hartmut Löwen
    Clemens Bechinger
    Nature Communications, 5
  • [33] Reaction processes among self-propelled particles
    Peruani, Fernando
    Sibona, Gustavo J.
    SOFT MATTER, 2019, 15 (03) : 497 - 503
  • [34] Collective behavior of interacting self-propelled particles
    Czirók, A
    Vicsek, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 281 (1-4) : 17 - 29
  • [35] Boltzmann and hydrodynamic description for self-propelled particles
    Bertin, Eric
    Droz, Michel
    Gregoire, Guillaume
    PHYSICAL REVIEW E, 2006, 74 (02):
  • [36] Fluctuations and pattern formation in self-propelled particles
    Mishra, Shradha
    Baskaran, Aparna
    Marchetti, M. Cristina
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [37] Rectification of self-propelled particles by symmetric barriers
    Pototsky, A.
    Hahn, A. M.
    Stark, H.
    PHYSICAL REVIEW E, 2013, 87 (04):
  • [38] Collective dynamics of dipolar self-propelled particles
    Vanesse, N.
    Opsomer, E.
    Lumay, G.
    Vandewalle, N.
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [39] Crystallization of self-propelled particles on a spherical substrate
    Yan FANG
    Chen WANG
    Hongyuan JIANG
    Applied Mathematics and Mechanics(English Edition), 2019, 40 (10) : 1387 - 1398
  • [40] Dynamics of self-propelled particles passing a bottleneck
    Mohammadi, Mahdieh
    Harth, Kirsten
    Puzyrev, Dmitry
    Hanselka, Tina
    Trittel, Torsten
    Stannarius, Ralf
    NEW JOURNAL OF PHYSICS, 2020, 22 (12)