A Self-Powered Dielectrophoretic Microparticle Manipulation Platform Based on a Triboelectric Nanogenerator

被引:12
|
作者
Zhou, Jian [1 ]
Tao, Ye [1 ,2 ]
Xue, Rui [1 ]
Ren, Yukun [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
中国国家自然科学基金;
关键词
cell separation; dielectrophoresis; high-voltage sources; microparticle manipulation; triboelectric nanogenerators; DROPLET; MICROFLUIDICS; SENSORS;
D O I
10.1002/adma.202207093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lab-on-a-chip systems aim to integrate laboratory operations on a miniaturized device with broad application prospects in the field of point-of-care testing. However, bulky peripheral power resources, such as high-voltage supplies, function generators, and amplifiers, hamper the commercialization of the system. In this work, a portable, self-powered microparticle manipulation platform based on triboelectrically driven dielectrophoresis (DEP) is reported. A rotary freestanding triboelectric nanogenerator (RF-TENG) and rectifier/filter circuit supply a high-voltage direct-current signal to form a non-uniform electric field within the microchannel, realizing controllable actuation of the microparticles through DEP. The operating mechanism of this platform and the control performance of the moving particles are systematically studied and analyzed. Randomly distributed particles converge in a row after passing through the serpentine channel and various particles are separated owing to the different DEP forces. Ultimately, the high-efficiency separation of live and dead yeast cells is achieved using this platform. RF-TENG as the power source for lab-on-a-chip exhibits better safety and portability than traditional high-voltage power sources. This study presents a promising solution for the commercialization of lab-on-a-chip.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A self-powered character recognition device based on a triboelectric nanogenerator
    Tcho, Il-Woong
    Kim, Weon-Guk
    Choi, Yang-Kyu
    NANO ENERGY, 2020, 70
  • [22] Self-powered wearable keyboard with fabric based triboelectric nanogenerator
    Jeon, Seung-Bae
    Park, Sang-Jae
    Kim, Weon-Guk
    Tcho, Il-Woong
    Jin, Ik-Kyeong
    Han, Joon-Kyu
    Kim, Daewon
    Choi, Yang-Kyu
    NANO ENERGY, 2018, 53 : 596 - 603
  • [23] Self-powered wireless sensing technologies based on triboelectric nanogenerator
    Si, Jiawei
    Yang, Jin
    Zhu, Zhaofeng
    Li, Zhukun
    Lai, Haiyang
    Han, Lei
    NANOTECHNOLOGY, 2025, 36 (13)
  • [24] Self-Powered Intelligent door handle based on Triboelectric Nanogenerator
    Deng, Yiping
    Liao, Lu
    Wu, Ying
    Hu, Gang
    Bai, Junjie
    Zhai, Yuan
    Zhu, Guang
    2017 IEEE 16TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2017, : 465 - 469
  • [25] Triboelectric nanogenerator based self-powered sensor for artificial intelligence
    Zhou, Yuankai
    Shen, Maoliang
    Cui, Xin
    Shao, Yicheng
    Li, Lijie
    Zhang, Yan
    NANO ENERGY, 2021, 84
  • [26] Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator
    Su, Yuanjie
    Chen, Guorui
    Chen, Chunxu
    Gong, Qichen
    Xie, Guangzhong
    Yao, Mingliang
    Tai, Huiling
    Jiang, Yadong
    Chen, Jun
    ADVANCED MATERIALS, 2021, 33 (35)
  • [27] A Self-Powered Lantern Based on a Triboelectric-Photovoltaic Hybrid Nanogenerator
    Cao, Ran
    Wang, Jiaona
    Xing, Yi
    Song, Weixing
    Li, Nianwu
    Zhao, Shuyu
    Zhang, Chi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):
  • [28] A triboelectric nanogenerator based on white sugar for self-powered humidity sensor
    Liu, Hongye
    Wang, Hao
    Fan, Yanping
    Lyu, Yan
    Liu, Zenghua
    SOLID-STATE ELECTRONICS, 2020, 174
  • [29] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Kequan Xia
    Zhiyuan Zhu
    Hongze Zhang
    Zhiwei Xu
    Applied Physics A, 2018, 124
  • [30] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391