On Uniqueness Properties of Rademacher Chaos Series

被引:0
|
作者
Karagulyan, G. A. [1 ]
Karagulyan, V. G. [2 ]
机构
[1] Natl Acad Sci Armenia, Inst Math, Yerevan 0019, Armenia
[2] Yerevan State Univ, Fac Math & Mech, Yerevan 0025, Armenia
关键词
uniqueness of Walsh series; Rademacher chaos; lacunary series; CONVERGENCE;
D O I
10.1134/S0001434623110548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given integer l >= 1, let {m(k)} be an arbitrary numeration of the integers permittinga dyadic decomposition 2(k1)+2(k2)+...+2(ks) with s <= l. We prove that (i) the convergence ofa Walsh series & sum;(k)a(k)w(mk)(x)on a set of measure >1-2(-4l) implies & sum;(k)a(k)(2)<infinity and (ii) if itconverges to zero on a set of the same measure >1-2(-4l), then a(k)=0 for all k >= 1.
引用
收藏
页码:1225 / 1232
页数:8
相关论文
共 50 条