On Uniqueness Properties of Rademacher Chaos Series

被引:0
|
作者
Karagulyan, G. A. [1 ]
Karagulyan, V. G. [2 ]
机构
[1] Natl Acad Sci Armenia, Inst Math, Yerevan 0019, Armenia
[2] Yerevan State Univ, Fac Math & Mech, Yerevan 0025, Armenia
关键词
uniqueness of Walsh series; Rademacher chaos; lacunary series; CONVERGENCE;
D O I
10.1134/S0001434623110548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given integer l >= 1, let {m(k)} be an arbitrary numeration of the integers permittinga dyadic decomposition 2(k1)+2(k2)+...+2(ks) with s <= l. We prove that (i) the convergence ofa Walsh series & sum;(k)a(k)w(mk)(x)on a set of measure >1-2(-4l) implies & sum;(k)a(k)(2)<infinity and (ii) if itconverges to zero on a set of the same measure >1-2(-4l), then a(k)=0 for all k >= 1.
引用
收藏
页码:1225 / 1232
页数:8
相关论文
共 50 条
  • [1] On Uniqueness Properties of Rademacher Chaos Series
    G. A. Karagulyan
    V. G. Karagulyan
    Mathematical Notes, 2023, 114 : 1225 - 1232
  • [2] On certain properties of Rademacher chaos
    Astashkin, S. V.
    Sukhanov, R. S.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 613 - 624
  • [3] On certain properties of Rademacher chaos
    S. V. Astashkin
    R. S. Sukhanov
    Mathematical Notes, 2012, 91 : 613 - 624
  • [4] DIFFERENTIABILITY OF RADEMACHER SERIES
    COURY, JE
    MICHIGAN MATHEMATICAL JOURNAL, 1975, 21 (04) : 321 - 336
  • [5] On the fourth moment condition for Rademacher chaos
    Dobler, Christian
    Krokowski, Kai
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01): : 61 - 97
  • [6] A NOTE ON RADEMACHER SERIES
    CAREFOOT, WC
    FLETT, TM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (167P): : 542 - &
  • [7] SPARSE RADEMACHER CHAOS IN SYMMETRIC SPACES
    Astashkin, S. V.
    Lykov, K. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (01) : 1 - 20
  • [8] On unconditionality of fractional Rademacher chaos in symmetric spaces
    Astashkin, S. V.
    Lykov, K. V.
    IZVESTIYA MATHEMATICS, 2024, 88 (01) : 1 - 17
  • [9] ADDITIVE METHODS IN RADEMACHER SERIES
    MUTAFIAN, C
    PEYRIERE, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1969, 93 (3-4): : 181 - &
  • [10] How Summable are Rademacher Series?
    Curbera, Guillermo P.
    VECTOR MEASURES, INTEGRATION AND RELATED TOPICS, 2010, 201 : 135 - 148