Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities

被引:3
|
作者
Hlavacek, Antonin [1 ]
Uhrova, Katercina [1 ]
Weisova, Julie [1 ]
Krcivankova, Jana [1 ]
机构
[1] Czech Acad Sci, Inst Analyt Chem, Veveri 97, Brno 60200, Czech Republic
关键词
CROSS-CORRELATION SPECTROSCOPY; FLUORESCENCE CORRELATION SPECTROSCOPY; LINKED IMMUNOSORBENT-ASSAY; UP-CONVERSION; NANOPARTICLES; MICROSCOPY;
D O I
10.1021/acs.analchem.3c01043
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Massively parallelspectroscopy (MPS) of many single nanoparticlesin an aqueous dispersion is reported. As a model system, bioconjugatedphoton-upconversion nanoparticles (UCNPs) with a near-infrared excitationare prepared. The UCNPs are doped either with Tm3+ (emission450 and 802 nm) or Er3+ (emission 554 and 660 nm). TheseUCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlatedwith an ensemble spectra measurement, and the limit of detection (1.6fmol L-1) and the linearity range (4.8 fmol L-1 to 40 pmol L-1) for bioconjugatedUCNPs are estimated. MPS is used for observing the bioaffinity clusteringof bioconjugated UCNPs. This observation is correlated with a nativeelectrophoresis and bioaffinity assay on a microtiter plate. A competitiveMPS bioaffinity assay for biotin is developed and characterized witha limit of detection of 6.6 nmol L-1. MPS from complexbiological matrices (cell cultivation medium) is performed withoutincreasing background. The compatibility with polydimethylsiloxanemicrofluidics is proven by recording MPS from a 30 & mu;m deep microfluidicchannel.
引用
收藏
页码:12256 / 12263
页数:8
相关论文
共 50 条
  • [31] Artificial intelligence-aided lytic spinal bone metastasis classification on CT scans
    Koike, Yuhei
    Yui, Midori
    Nakamura, Satoaki
    Yoshida, Asami
    Takegawa, Hideki
    Anetai, Yusuke
    Hirota, Kazuki
    Tanigawa, Noboru
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (10) : 1867 - 1874
  • [32] Artificial intelligence-aided lytic spinal bone metastasis classification on CT scans
    Yuhei Koike
    Midori Yui
    Satoaki Nakamura
    Asami Yoshida
    Hideki Takegawa
    Yusuke Anetai
    Kazuki Hirota
    Noboru Tanigawa
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 1867 - 1874
  • [33] Artificial Intelligence-Aided Colonoscopy Does Not Improve Endoscopist Performance in Community Settings
    Kandel, Pujan N.
    Mupparaju, Vamsee
    Mathur, Kashin
    Patel, Varun
    Shinde, Trupti
    Chandrupatla, Sreekanth
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2024, 119 (10S): : S248 - S249
  • [34] Knowledge, perceptions and behaviours of endoscopists towards the use of artificial intelligence-aided colonoscopy
    Tham, Sarah
    SKH Endoscopy Ctr, Siok-Peng
    Koh, Frederick H.
    Teo, Eng-Kiong
    Lin, Cui-Li
    Foo, Fung-Joon
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2023, 37 (10): : 7395 - 7400
  • [35] Graded Warning for Rear-End Collision: An Artificial Intelligence-Aided Algorithm
    Fu, Yuchuan
    Li, Changle
    Luan, Tom H.
    Zhang, Yao
    Yu, Fei Richard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (02) : 565 - 579
  • [36] Artificial intelligence-aided CT segmentation for body composition analysis: a validation study
    Borrelli, Pablo
    Kaboteh, Reza
    Enqvist, Olof
    Ulen, Johannes
    Traegardh, Elin
    Kjoelhede, Henrik
    Edenbrandt, Lars
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
  • [37] An integrated-hull design assisted by artificial intelligence-aided design method
    Ao, Yu
    Duan, Huilin
    Li, Shaofan
    COMPUTERS & STRUCTURES, 2024, 297
  • [38] Research on Aerobics Training and Evaluation Method Based on Artificial Intelligence-Aided Modeling
    Chen, Chen
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [39] Artificial Intelligence-Aided Computation for Green's Function of the Spherical Layered Earth
    Pan Zhuohong
    Wang, Baoquan
    Liu, Jianben
    Wang, Yan
    Tian, Yang
    Wang, Haocheng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (13)
  • [40] Artificial intelligence-aided CT segmentation for body composition analysis: a validation study
    Pablo Borrelli
    Reza Kaboteh
    Olof Enqvist
    Johannes Ulén
    Elin Trägårdh
    Henrik Kjölhede
    Lars Edenbrandt
    European Radiology Experimental, 5