Bayesian deep learning for affordance segmentation in images

被引:2
|
作者
Mur-Labadia, Lorenzo [1 ]
Martinez-Cantin, Ruben [1 ]
Guerrero, Jose J. [1 ]
机构
[1] Univ Zaragoza, Inst Ingn Aragon I3A, Zaragoza, Spain
关键词
D O I
10.1109/ICRA48891.2023.10160606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Affordances are a fundamental concept in robotics since they relate available actions for an agent depending on its sensory-motor capabilities and the environment. We present a novel Bayesian deep network to detect affordances in images, at the same time that we quantify the distribution of the aleatoric and epistemic variance at the spatial level. We adapt the Mask-RCNN architecture to learn a probabilistic representation using Monte Carlo dropout. Our results outperform the state-of-the-art of deterministic networks. We attribute this improvement to a better probabilistic feature space representation on the encoder and the Bayesian variability induced at the mask generation, which adapts better to the object contours. We also introduce the new Probability-based Mask Quality measure that reveals the semantic and spatial differences on a probabilistic instance segmentation model. We modify the existing Probabilistic Detection Quality metric by comparing the binary masks rather than the predicted bounding boxes, achieving a finer-grained evaluation of the probabilistic segmentation. We find aleatoric variance in the contours of the objects due to the camera noise, while epistemic variance appears in visual challenging pixels.
引用
收藏
页码:6981 / 6987
页数:7
相关论文
共 50 条
  • [41] Deep Learning as a Tool for Automatic Segmentation of Corneal Endothelium Images
    Nurzynska, Karolina
    SYMMETRY-BASEL, 2018, 10 (03):
  • [42] Temporomandibular joint segmentation in MRI images using deep learning
    Li, Mengxun
    Punithakumar, Kumaradevan
    Major, Paul W.
    Le, Lawrence H.
    Nguyen, Kim-Cuong T.
    Pacheco-Pereira, Camila
    Kaipatur, Neelambar R.
    Nebbe, Brian
    Jaremko, Jacob L.
    Almeida, Fabiana T.
    JOURNAL OF DENTISTRY, 2022, 127
  • [43] Segmentation of Nucleus in Histopathological Images Using Deep Learning Architectures
    Ayaz, Ogun
    Usta, Hamdullah
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [44] Automatic Prostate Segmentation using Deep Learning and MR Images
    Yuan, Y.
    Qin, W.
    Buyyounouski, M. K.
    Hancock, S. L.
    Bagshaw, H. P.
    Han, B.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E379 - E379
  • [45] RootPainter: deep learning segmentation of biological images with corrective annotation
    Smith, Abraham George
    Han, Eusun
    Petersen, Jens
    Olsen, Niels Alvin Faircloth
    Giese, Christian
    Athmann, Miriam
    Dresboll, Dorte Bodin
    Thorup-Kristensen, Kristian
    NEW PHYTOLOGIST, 2022, 236 (02) : 774 - 791
  • [46] Skin Lesion Segmentation in Clinical Images Using Deep Learning
    Jafari, M. H.
    Karimi, N.
    Nasr-Esfahani, E.
    Samavi, S.
    Soroushmehr, S. M. R.
    Ward, K.
    Najarian, K.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 337 - 342
  • [47] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF CORAL IMAGES IN UNDERWATER PHOTOGRAMMETRY
    Zhang, Hanqi
    Gruen, Armin
    Li, Ming
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 343 - 350
  • [48] Generalization of a deep learning network for beamforming and segmentation of ultrasound images
    Seoni, Silvia
    Matrone, Giulia
    Casali, Nicola
    Spairani, Edoardo
    Meiburger, Kristen M.
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [49] Exploring deep learning networks for tumour segmentation in infrared images
    Kakileti, Siva Teja
    Dalmia, Aman
    Manjunath, Geetha
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2020, 17 (03) : 153 - 168
  • [50] Semantic Nuclei Segmentation with Deep Learning on Breast Pathology Images
    Turan, Sevcan
    Bilgin, Gokhan
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,